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CHAPTER I

INTRODUCTION

In this thesis the term "plasma" is understood to mean a gas which

is sufficiently ionized so that its dynamical behavior is dominated by

electromagnetic effects. A "magnetoplasma" is a plasma with a magnetic

field impressed upon it. The study of the plasma state of matter is a

comparatively new branch of physics primarily because the natural

occurrence of plasma on the earth' s surface is nearly non-existent

(except for transient plasmas caused by lightning). However, the sun

and stars, interplanetary gases and the earth's upper atmosphere (iono-

sphere) are all examples of plasmas. In fact most of the universe is in

the plasma state.

The advent of radio and in particular radio astronomy made possible

the examination of these distant plasmas. In fact, it was in terms of the

interaction between radio waves and the ionospheric plasma that the

transmission of radio waves across the Atlantic was explained. More

recently, the use of satellite and rocket-borne probes have made in-situ

measurements possible in many of these plasmas, and for the first time

many theoretical predictions about plasma behavior can be subjected to

experimental verification. In addition to these naturally occurring

plasmas, there are now many man made plasmas, such as those produced

in gas discharge tubes and in high temperature plasma confinement

devices for use in the study of thermonuclear power generation. Conse-

quently, there is presently a great deal of interest in problems of radia-

tion both in and through plasmas. This thesis investigates the radiation

from sources which are moving in a warm magnetoplasma. In particular,

we are interested in radiation from sources which are imbedded in the

Note: Manuscript submitted February 7, 1975.
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ionospheric plasma surrounding the earth.

Charged Particle Radiation in Plasmas

The study of the radiation resulting from the uniform motion of a
charged particle through a simple isotropic dielectric medium dates back
to the experiments of Cerenkov during the period 1934-1938 and to the
theoretical investigations of Frank and Tamm in 1937 [ 21 ]. Later,
when radio astronomy was still in its infancy, it was suggested by
Kiepenheuer that the non-thermal radio emissions from the sun might be
due to radiation from beams of electrons moving through the plasma

which forms the solar corona [ 36 ]. Also, the decametric noise bursts.
from Jupiter were interpreted in terms of radiation from suprathermic
beams of charged particles streaming through plasmas [ 18 1.

Zheleznyakov [ 89 ] gives an extensive review of theory and experiment
regarding radio emission from the sun and planets and states (p.569)
that a noncoherent magneto-bremstrahlung is most promising for
interpreting the majority of the (solar) sporadic radio emission's compon-
ents of the continuum type. .". "Noise" observed by satellite-borne
antennas in the magnetosphere has also been explained in terms of beam
plasma interactions [ 34 ]. Most of the theories cited depend in great
part on extending the original work of Frank and Tamm to include more
complicated dielectric media such as anisotropic plasmas.

The energy loss from an electron moving with constant velocity
parallel to the magnetic field lines of a magnetoplasma was first calcu-
lated by Kolomenskii [ 41 ] in 1956 using the Hamiltonian method.
Cohen [ 12 ] included temperature effects but treated only isotropic
plasmas. Tuan and Seshadri [ 81 ] gave some of the first numerical
results for Cerenkov radiation in a cold anisotropic plasma and later
1 Magneto-bremstrahlung is radiation caused by the accelerated motion
of charged particles in a magnetic field. Magneto-bremstrahlungcaused
by relativistic electrons is usually called synchrotron radiation; the
radiation of non-relativistic electrons in a magnetic field is sometimes
called gyro-frequency radiation (since it occurs at the gyro-frequency
and its lower harmonics) or cyclotron radiation.
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Seshadri [ 65 ] also included temperature effects. Cerenkov radiation

was studied via a kinetic approach by Kikuchi [ 38 ] . Sakurai and

Ogawa [ 62 solved for the far fields of the spiraling charge in a cold

magnetoplasma.

The present treatment differs from those given previously in the

following ways:

1) The effects of collisions between plasma particles is retained

in this thesis.
2) Effects of a non-isotropic kinetic pressure tensor are treated.

3) Coherent radiation from bunches of charged particles is

examined.

4) The radiation from a charge spiraling in an anisotropic plasma

is calculated including both electron and ion temperature effects.

5) A comparison is made of results using different plasma models.

Several different models of plasmas are used in addition to the

popular cold plasma model. Model A is basically a quasi-cold plasma

model with first order temperature corrections introduced via non-

diagonal pressure tensors. This model can be derived from what is

often referred to as the "full adiabatic theory" [ 4 ]. Model A, for

certain frequencies where Landau damping is negligible gives results

identical to those obtained using a kinetic theory analysis of the prob-

lem [ 6 . Model H is a warm plasma with temperature effects included

via scalar pressures. This approach is essentially hydrodynamic in

nature, and consequently does not include the effects of Landau damping.

Also, we present some derivations based upon a kinetic theory approach,

referred to as Model K. The various models are all identical in the limit

of zero temperature and in this limit they reduce to the familiar "cold

plasma" model.

Numerical results based on the use of these models are presented,

and comparisons made with experimental data. In addition, some numer-

ical results are given for coherent radiation from a group of charges
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where the assumption is made that the charges radiate as a single
macroscopic spheroid having a uniform charge density. MKSA units are

used throughout the thesis with exceptions denoted explicitly.
The thesis concludes with an evaluation of the models used, their

limitations and relative merits, and suggestions are made as to possible
future theoretical refinements and applications of the theory. Several
errors existing in the literature are also noted and discussed.

Antennas Radiating in the Ionosphere

Closely related to the free charge problem is that of an antenna
radiating in the ionosphere. Like the problem of the free charge radiator,
one is especially interested in the power fed into the surrounding plasma,
the types of waves excited and the structure of the far zone radiation
fields. However, when attempting to understand the operation of an

ionospheric-imbedded antenna there are several factors which serve to
complicate the analysis. The following is a list of some of these factors.

1) A sheath will form about the antenna. The sheath exists due
to the different mobilities of the negatively and positively charged con-
stituent particles of the plasma [77,86] ,due to v x B induced potentials
along the antenna as a consequence of its motion through the earth' s

magnetic field [ 57 ] and due to any potentials applied to the antenna

terminals [54,59].

2) Since the plasma is not a perfect insulator, charges will flow

between the antenna and plasma complicating the already difficult prob-
lem of determining the current distribution along the antenna [ 13 ] .

3) As a result of finite temperatures of the ionospheric components

acoustic type waves may also be excited and received by antennas [ 88 ].

4) At the low frequencies ions can react to the antenna excitations
and their motion becomes important [ 9 ].

5) Collisions between plasma constituents causes damping of

waves and makes the concept of radiation resistance ambiguous [ 23 1.
Collisions also enable coupling between different plasma modes and
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losses must be introduced in cold-plasma calculations to prevent certain

infinities [ 15 ].

6) Antenna motion causes Doppler shifts, in addition to spatial

inhomogeneities such as wakes and shock fronts [ 35 ].

7) In the presence of the earth's magnetic field the kinetic

pressure is more appropriately described by a tensor rather than by a

simple scalar pressure [ 67 1.

8) Very modest potentials applied to the antenna terminals result

in non-linear fields [ 49 1.

Presently, all treatments of the antenna problem have omitted

some, and usually most, of these effects. Consequently, analyses

tend to be too idealized to permit comparisons with experiment. In this

thesis, we shall concentrate most of our efforts on the problems asso-

ciated with items (3) - (7). Most of the other items are discussed in

some detail in a paper by Baker, Weil, and Bearce [ 5 .



CHAPTER II

GOVERNING EQUATIONS-HYDRODYNAMIC APPROACH

In this chapter we shall give the equations used to describe
radiation in homogeneous plasmas via a hydrodynamic approach. The
procedure will be to first calculate moments of the Boltzmann equation
for each species of particle in the plasma; the electrically charged
particles assumed moving under the influence of Lorentz forces. The
simplest possible models are used for the collision terms appearing in
the moments of Boltzmann equation in order to make the mathematics
tractable and still retain some collision effects.

Using the Fourier-analyzed Maxwell curl equations and assuming
the properties of the plasma can be described by a mobility or dielectric
tensor, a "wave equation" is derived which gives the dependence of the
electric field in the plasma on the "external" source currents generating
this field. The resulting moment equations and the wave equation are
then linearized and expressed in terms of "polarized wave" coordinates.
These are the equations which form the basis for much of our work.

Moments of the Boltzmann Equation

The derivation presented here is very similar to that given by
Delcroix [ 14], and Shkarofsky et.al. [69 ]. Our analysis begins with
the Boltzmann equation, which we assume to adequately describe the
motion of the plasma particles in phase space. For each species, s, of
particles of mass m in the plasma there corresponds a distribution
function, f, which in general will be a function of the position, r, and
velocity, , of each particle as well as time, t. If F is the force
acting on each particle, then the Boltzmann equation can be written

6
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( 2.1 )f /a t+ w-Vf + m-F Ps. (f / w) = (Of /6t)it5 - - Ss in 
where the gradient in velocity space is defined by

a - A a A b A a-w eWX -wx+ aWY -YWZ ( 2.2 )

A A A
and e , e and e are unit vectors in velocity space. The inter-

wx wy w

action term, ( f/6t)int appearing in (2. l)represents changes in the

distribution function due to collisions between different species of par-

ticles as well as collisions between particles of the same species.

The force Fs, under which the particles of charge qs are accelerated,

is the Lorentz force,
Fs = qs (E + wx B) ( 2.3 )

where E and B are the macroscopic electric and magnetic fields in the

plasma. Since each species of particles obeys equations of the same

form, we shall temporarily omit the subscript s to simplify the notation.

Using the convention of summing over repeated latin subscripts on vec-

tor or tensor quantities (i.e. EAjBj - AB A = x Bx + Ay By + A BZ),

(2.1) is written

bf/ t + W. bf/bx. + m- F bf/ w. = (6 f /6t int . ( 2.4 )

Let A (r , w, t) be a general function of position,velocity and time,

and define the average, A ( r , t) , by

( 2.5 )

where N is the number density

N = fd 3 w 2.

A (r , t) -- N-1 I A L , �y , t) f d3W ,

( 2 .6 )
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Here and elsewhere in this thesis, we use the convention that
when the integration limits are not explicitly given, they are to be
understood to span the whole space of the variable or variables involved.
We also take the liberty of writing a single integral sign to represent a
multiple integration whenever it is obvious from the form of the

expression involved that a multiple integration is required.

We define the average velocity, V, the kinetic pressure, P and
the thermal energy flux tensor, Q. as follows:

V- N-1 f f d3 w (2.7 )

P m f (w- V ) (w - V) f d3 w, (2.8 )

Q m f (w- V) (w - V ) (w - V ) f d3w (2.9

Now to form moments of the Boltzmann equation, multiply ( 2.4 ) by A

and integrate over all velocities. Consider the various terms separately.

SA ( f /bt) d3 w = atb A f d3w - (bA/ t) f d3 w

= b(NA)/t- N (bA/ t) (2.10)

A w (f/ x) d3w = A w. f d3 w -f (bA/x) w f d3w
bx 

= b(NAwj)/bx. - N (A/ax.) w; (2.11

m-1 $ A F. (f/a w) d3w = m-1 J A Fj (f/ w) dw ] dwk dwl, j £ k d 1

= m-1 [AF f] dwk dw -

r-1; [d (A F)/bwj f dw

= -mi 1 N (AF)/ bw (2.12
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Note that in ( 2.12) we have set the term

AF. f= 0 for w ±' . (2.13)

This ensures that the moments of f: N, V , ... remain finite and
co_

makes f [AF. fQ dwk dw1 = 0. We may write the Lorentz force as

Fj = q (E + Ej k1 Wk B1) (2.14)

with .kl' the Levi-Civita symbol, defined by

1 if jkl is an even permutation of xyz

jkl = -1 if jkl is an odd permutation of xyz (2.15
0 otherwise.

We note that for the Lorentz force

F. /wj =0. (2.16)

Therefore the right side of (2.12 ) simplifies to

- N m-1 (bA/bw.) Fj . ( 2.17

Finally, for the interaction term, we define the interaction operator A as

A A=N1 f A(6f/6t).it d3 w. ( 2.18)

Collecting the various terms obtained we arrive at the macroscopic

equation

a (NA)/ bt - N bA/bt + a (NAwj)/bxj - N (bA/bx.)w.

- N m-1 (bA/w .) F. = N A A. ( 2.19)

In the following sections we shall obtain the first three moment equa-

tions by setting A(r ,w, t) equal to 1, m w and m (w - V)(w - V),

respectively.
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Continuity Equation

Reintroducing the species subscript s, and putting As = 1 in
( 2.19 ), and inserting the averaged quantities N and V, we obtain the
continuity equation for particle number conservation.

bNS/ bt + b (Ns Vsi) /x = Ns As 1 = (6 Ns/6t )int (2.20)

The source-term (6 N /6 t)int which appears in the continuity
equation includes all short range interactions which change the number

density. For the ionosphere, these interactions can be divided into
two broad categories: those which result in production of ionization
(ionization processes) and those which result in destruction of ioni-
zation (recombination processes). Production processes are solar
photoionization and corpuscular ionization. The former is a result
of particle-photon interactions, while the latter is a result of high
energy particle-particle collisions. The primary recombination process
responsible for the loss of ionization in the ionosphere is that of
electron-ion recombination. Typical reaction times for these processes
are given by Rishbeth and Garriott [ 61 ] . For studying radiation phen-
omena in the ionosphere, the source-terms appearing on the right side
in (2.20) are small compared with the terms on the left since N is
nearly constant over times of the order of a few typical radiation periods.
Therefore we can neglect the term (6 N /6 t)int in (2.20) and obtain the
familiar form of the continuity equation

(2.21)N / bt+ b(N V) /X = 0.
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Momentum Transport Equation

Setting As = m w in ( 2.19 ) gives

m b (N V ) / bt + m (Ns w w )/ x Ns Fs =Ns m sA w .(2.22

This is a vector equation which for the k- component is written

mS (N Vsk)/at+ m b(Ns wkwj)/x -NSFsk Ns msA wk. (223

It is easy to show that

Wk w= (wk- Vsk)(w - V Sj)+V skVSj (2.24

Hence with the help of ( 2.24 ) and our definition of P, and inserting

the Lorentz force for F we can write (2.23 ) as

m a (N V )/ t + P /ax +mb(N V V.)/x. -
s s sk skj 5 s sk Sj 

Ns q (Ek + fklm V SB) Ns msA s wk (2.25

If we make use of the continuity equation ( 2.21 ) this can be simplified

to

b Vsk/ t + P p x j + Vsj k/ bx
sk ~s skj S 5s 

q m 1 (E+ V B =A w (2.26)
s sk. +kIm SI in s k

where we have introduced the mass density, pS . To use this equation,

an explicit and mathematically tractable form for the interaction

operator As wk must be found.

The most elementary technique which allows us to include some

effects of collisions is the simple relaxation model, wherein the

interaction term assumes the form

(6f/6t)int= -v (f-f 2)(2.27 )
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where f is some equilibrium velocity distribution and v1 is the relax-
0

ation time for the distribution. This model is discussed at length by

Tanenbaum [ 78 ]. Our primary objective in using this simple collision

model is to ensure the proper selection of integration contours about

certain singularities appearing in various integrands in this thesis, and

pot to obtain quantitative measures of the collision effects such as

radiation absorption.

When the collision model (2.27) is used, we obtain for the inter-

action operator Asw

A w= N- v (w f W f ) d w =v -sV (2.28)
5 5 5 -: so 5 5 so

where Vo is some equilibrium average particle velocity. Thus our

momentum transport equation becomes

a V /at + p -1 P kb/ x +V . /b x - q m (Ek + klm Vsl m

Us Vsk sko ) (2.29)

Transport Equation for Kinetic Pressure

Replacing A sby m (w - Vs)(w - Vs ) in (2.19 ), the result is a

tensor equation. We look at the equation for the (k,l) - element of this

tensor, considering each term of (2.19 ) in succession.

b (N AskI)/ at = a Psk/ bt (2.30 )

-NS skl /t=0 (2.31 )

b (N A w.)/bx = bQ /b x + V/ bx) Pl
s skIl sklj x SiV / sx)PkI

+VS b Pskl/ x. (2.32 )

- NS (bASkl/bxj) wj = (bVsk/ bxj) PSj +

(2.33 )P (bV / bx.)
skj SI I
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- N m'- (bA /w) F =-q ml P B
s s skl 3 sj s s kmn shm n

- q m elmn P B (2.34ss lnskin n (23

Ns As Askl ps As (k Vsk)(w - Vsl ) (2.35

Collecting these terms, we obtain the transport equation for kinetic

pressure

P /t + Q s1./bx. + (OV/x) Pkl + V bPkl/bx +

(bVsk/ bx) Pl. + P ski bVSI/bx +

q m- ( B P + B P
s s knm n lIm Inm n km

Ps s (Wk - Vsk) (w- VS) ( 2.36)

As in the previous section, we again usc the collision model

(2.27) to obtain a tractable form for the interaction operator. This

results in the relatively simple expression

A m ( w - V ) (w--V) = N (P -P (2.37)

where P is some equilibrium kinetic pressure. In general, the equili-

brium kinetic pressure P will be a scalar quantity as indicated for=so
example in [ 66 ]. However, in the ionosphere, the temperatures

corresponding to particle speeds parallel and perpendicular to the

Earth' s magnetic field are often unequal for times on the order of many

cycles of the radiation. Hence, the unperturbed kinetic pressure in the

ionospheric plasma is likely to be a tensor quantity corresponding to

different pressures parallel and transverse to the Earth's magnetic field.

Thus for our purposes we treat P appearing in (2.37) as the unper-=SO
turbed kinetic pressure since, for the cases we wish to consider, the

unperturbed pressure represents a quasi-equilibrium state. This
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method of introducing losses into the kinetic pressure transport

equation is used by Sharma [ 67 ].

In order to close the set of moment equations we shall use the

adiabatic approximation V Q = 0 as used for example in[10,82]. Then

(2.36) simplifies to

a Pk/at+ (V Si/xi)PSkl +VSi PSkl/ xi+

(bVk /x) +P aV /bx.+sk g slj skj sl 

q m1 ( ( B P + B P )
s s knm n slm +nm n skm

-Vs ( skl sokl ) (2.38)

An alternative procedure to closing the momcnt equations which does

not require setting V Q = 0 is given by Oraevskii, et. al. [ 56 ].
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"Wave Equation"

Before we can solve for the power fed into a plasma from a

radiating source it is first necessary to determine the dependence of the

electric field in the plasma upon the source current density J (ex)which we

often call the "external" current density. The purpose of this section is

to derive this functional dependence. The relation between the electric

field and the source current as derived here is often called the "wave

equation", for it is simply a generalization of the free space wave

equation to the case of complex dielectric media.

We begin the derivation by Fourier-analyzing the Maxwell curl

equations (MKSA units). Assuming that all field quantities can be con-

sidered to be made up locally of a superposition of plane waves exp

(i k * r - i c t) with k the wave propagation vector and w the radian

frequency, these equations can be written,

kx = a (2.39)

and

i KL 1 k x -i + N qs + ( (2.40)0 - - 0 - s 5 55-

where the convention will be to use script capital letters for the Fourier

transformed fields. (ex) is the Fourier transform of an external current

density which for our purposes will be taken as flowing independently of

the plasma medium in which it is embedded, and N q s is a Fourier

transformed convection current in the plasma. pO and c are the usual

permeability and relative permittivity of free space. The summation is

over all particle species in the plasma. If the plasma is described in

terms of a mobility tensor p. which relates As to £ via

- _ s - (2.-1)

then ( 2.4 0) can be written as
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i p7- k x= - i E ' c + N q P. - (2.42 +-- 0 S s _ (.42

The relation between the "induced" current S(i) and the electric field-s
given by

(in)
s -Ns qs s * 6 (2.43

defines the often used conductivity tensor a which is obviously related
to the mobility tensor by

r =N q s (2.44
=s 5=5

Defining the dielectric tensor K by

K = I + i ( )-f1 N qj I + i (% F (2.45)
- = 0 s 5 s =s

(2.4 2 ) becomes

ip.L' k x = -i E K + ) (2.46)o 0- - _

Solving ( 2.39) for 3 and inserting the result into (2.46 ) gives the
single equation for (S, namely,

k x (k x ) + ( 2/ c2 )K * = -i . je x) , (2.47)

where c is the velocity of light in a vacuum. Using the vector identity

kx (kx6) =k (k * ) -k2 (2.48)

we can write the "wave equation" for 

- k (k - ) + k W - (0 K * = i p. (ex) . (2.49)
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At this point we have only a formal relationship between the

electric field and the source or "external" current density, since we

have not yet specified the components of the dielectric tensor K . What

we are doing is putting all of the complexities of the plasma into this,

as yet unspecified, tensor. Provided that the dielectric tensor compon-

ents are independent of the electric field, the "wave equation" can be

straight-forwardly inverted to yield an expression for the electric field.

When the dielectric tensor depends upon the electric field, the radiation

problem becomes an enormously complicated nonlinear problem. Such

situations are not at all difficult to realize in practice. For example, an

electric dipole will drive a plasma in which it is embedded in a nonlinear

fashion when only a few volts, i.e. > 1 volt, are placed across its

terminals [49 . In this thesis, we shall restrict ourselves to linear

plasma responses. Analyses of the nonlinear antenna-plasma problem

are given by Baker, Weil, and Bearce [ 5 and Shkarofsky [68 which

treat the problem of the input impedance of an antenna under large drive

levels.

Linearization and Transformation

Till now, all the field quantities E, B, P Vs I etc. have

referred to the total field. Now we wish to consider all field quantities

as being composed of an unperturbed part indicated by a subscript, o,

and a small perturbation caused by an external source which is written

without the subscript o. We shall assume that the present field quan-

tities can be replaced as follows:

E-0 + E B-B + B , Vs 0+Vs

Ns N + Ns ,+p P Pso + = (2.50)
s so so5 =s = SO = s

The first term to the right of each arrow represents the unperturbed value

of the respective field while the second represents only the perturbed

field. Note that when no source is present, the plasma is assumed to be
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at rest ( Vo = 0) with no ambient electric field( E0 = 0) but permeated by
Aa constant magnetic field (Bo = Bo ez ) directed along the positive

z-axis. Retaining only terms to first order in the perturbation fields the
moment equations become

bNS / t + Nso jVS / x = 0 (2.51 )

bV /t+p-l /ax -qsm-l (E +l V1 B )sk 0 o skj j s k fl lo

V Vsk (2.5 2 )

bPskl/bt+ (bVSi/bx. Pokl+ (Vsk/bxj) Psolj +

P b V / x + q m 1 (C B P +e B P +soki SI j s s knm on sM lnm on skm

Eknm n solm Elnm n sokm ) Vs skl (2.5 3

This amounts to a linearization of the moment equations.
We shall perform a double transformation of the moment equations

as follows: First, we shall Fourier-analyze them and second, we shall
express the resultant equations in terms of Polarized-Wave (P-W) space.
For a discussion of Polarized-Wave space see Appendix A. Field quan-
tities which depend on the Fourier transform variables (k , ) will be
designated by capital script letters as previously indicated.

The first two moment equations, (2.5 1 ) and (2.52 ), become

7-?s Nso k 2r s ? = (2.54 )

- i /K N + i 1 9 k _ q ml S + i r w sa so sa- y y s s a bs sa= >stsa *VS V(2.55 )
The radian gyrofrequency bs appearing in ( 2.5 5 ) is defined as

Wbs q B / m, and contains the sign of the charge.
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As in the case of repeated latin subscripts, we use the summation

convention of summing over repeated Greek subscripts on vector and

tensor quantities. In this thesis, Greek summation indices take on the

values +1, -1, 0. By way of illustration we write for vectors A and B

A- B A BA - A Bv= A 1 B + Al B-1 + A Bo. ( 2.56 
V -VV

Greek indices can also appear as algebraic quantities. This feature

considerably simplifies the form of many equations. For example,

v -B vA B =A-B -AlB. B- (2.57)
V V V -V V

Note, however, that no summation is implied in the following examples

containing vectors A and B and Bessel function I

oA B I I Ba (2.58)

since a does not appear as a repeated subscript on vector or tensor

quantities.

In the transport equation for kinetic pressure ( 2.53 ), we first

Fourier-analyze this equation and then eliminate 3 by using the Maxwell

equation ( 2.39) and the identity ( H.46). Then transforming to P-W

space, realizing that in Cartesian space 9 is symmetric, we obtain

(-iu+v +iwbs(a+x> )# =-ik s P -i? k P
+ V bs (a )S a X -Y y soax SG by soyA

iP k T_ q m-1 (S k P
so - 'Y Y s s a (U-y soy X

ka c6_ o P syX +P k+ PAou -k £a, kX). (2.59 )

Linearizing the constitutive relation ( 2.43 ) we get

in = N q s =? s c (2.60 )-s so 5-5 =s -
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Hence, in the linear regime

a= N q (.1S Nso qs LLs (2.6 1 )

and from (2.45 ) the linearized dielectric, mobility and conductivity
tensors are connected by

K = + i(E w1 N q 1 s =+ i c C'1 r . (.2( s so i =S (2.62 )

The "wave equation" (2.49 ) looks formally the same after lineari-
zation. In terms of P-W space it becomes

(n2 I - K - n n_ ) i ( )-1 y(ex) (2.63 )a-)' 0-') 0 a
which is written using the refractive index vector n, defined by
n = c k/ . The quantity I is a component of the identity tensor in
P-W space. I = 1 if the algebraic quantity - y = 0 and I y = 

if o -y 0.
If (ex) = 0, then the "wave equation" reduces to

(n2 I -K -n n ) 6 = 0. (2.64)a- a- -Y Y

In order for there to exist non-trivial solutions to this equation, the
determinant of the matrix multiplying must vanish, that is,

det (n I, - K - n n_ ) 0. (2.65)

This is referred to as the dispersion relation because it gives the
functional dependence between frequency and wave propagation or
refractive index vector.

The linearized and transformed equations given in this chapter are
collectively referred to as the "governing equations" - hydrodynamic
approach.



CHAPTER III

GOVERNING EQUATIONS-KINETIC APPROACH

In the previous chapter we obtained a set of equations used for

studying plasma phenomena which are based on a hydrodynamic approach.

In the hydrodynamic approach one does not work directly with the Boltz-

mann equation but rather with the moments of this equation. Hence, this

approach can not describe those phenomena which depend on the explicit

form of the distribution function rather than just on averages obtained

with it. However, in this chapter we shall work directly with the linear-

ized Boltzmann equation. We write down a formal solution of this equa-

tion and make the connection between the solution of the Boltzmann

equation and the expression for the dielectric tensor which describes a

warm magnetoplasma. Having obtained an expression for the plasma

dielectric tensor, we can then combine this with the Maxwell equations,

as done in the previous chapter, to get a set of equations governing

radiation in homogeneous plasmas based upon a kinetic approach.

A great deal of the material which appears in this chapter is based

on the numerous Russian investigations in this area; see for example the

book by Klimontovich [ 39 1. We also found the papers by Bernstein

[ 7 1 and Kikuchi [ 3 8 ] to be extremely useful in this regard.

As in the previous chapter, our starting point is the Boltzmann

equation which we write in the form

bf/bt+w * Vf + m-l q ( + w x B) - (bf/(w) = (6f/6t)int 3.1)

where we use the same notation as in the previous chapter. An equation

of the same form holds for each species of charged particles in the

plasma.

21
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Using the simple collision model (2. 27) to approximate
the interaction term and linearizing in a manner similar to that used in
the previous chapter with f f + f , we get

(bf/b t)+ w Vf+ m7q(wxB ) (f/wi)+If= -f-lq(bf /wj(+wxB). ( 3.2

Note that in Klimontovich's book that his eqn. ( 9.4 ) is missing the
term -m-1 q (f / w) w x B which occurs in our corresponding eqn.
(3 .2 ). He claims that this term is identically zero if the distribution
function f is of the form f (w) = f (w2 , w2). However, this condition
alone is not sufficient to guarantee the vanishing of the additional term.
To see this, consider the particular distribution function

f0 = e t wz (3.3

If ax £ , then fo/ w is clearly not parallel to w and therefore
(f0/w) w xB is not always zero. Hence this term must be retained
if we are to allow for such ambient undisturbed distribution functions
such as given by ( 3.3 ).

We find it convenient to express those terms which derive from
the Lorentz force in terms of "polarized-wave" space. Thus we write

(bf/bt)+w (f/bx )+iwb yw (bf/wJ +f = -m-lq(bf/bwj [E wxpll.( 3 4

From Appendix A we use the relation

(a (3. ) 2 +iy2-2W- b +(_ 2) it3Y I ~~~~~~~~~~z

where the velocity is written in cylindrical (w, X, wz) coordinates,
to obtain
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(bf/at) + wL cos (f/ax) + w. sin (f/by) + wz (bf/bz)

- c(1 (bf/b ) +vf= -m q Of 1 ) E . ( 3.6

Consider solutions of the equations

dx/dt = w-cos , dy/dt = w sin , dz/dt = wz

dw, /dt = O. d/dt = -b dw/dt = 0, ( 3 .7 )

which are the characteristics[31 of the homogeneous linearized Boltzmann

equation. The solutions of these characteristic equations connects the

values of r, w at time t with the values of R. Wat time t'. Here, r, R

are position vectors with cartesian coordinates (x, y, z) and (X, Y, Z)

respectively and w, W are velocity vectors with cartesian coordinates

(wx, w , w ) and (Wx, Wy, W ) respectively. Thus

R(t', t, w, r) = R(0, t-t', w, r) and W(t', t, w) = W(0, t-t', w).
3.8

The solutions of (3.7 ) are

Y Y W cos i + cos W1 s w (t - t')

z Z + Wz (t - t')

W =W1

= - W b (t--t')

w =W . ( 3.9)
z z
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The inverse relations are

X =x - w sin (t' - t) + w sin 0b ±iL~ b I b 1 In

Y Y + ob ± W COS 0 - b i b -L

Z z + w (t' -t)

= 0- b (t' - t)

W =w (3.10 )z z

Using the relations (3 10)we can now write the linearized Boltzmann
equation in the form

f r, ~, t) = e V (t to) f R (0, t-t , w, ), W (0,t-to, Iw), t 0 0~~~~

Jlf t q/ St7w (0tt 6wi V( (tt' (b /t two) 
t

+ W 0t-t' ,w xB iR(0,t-t', w ,r),t') }dt'(31 )

where we take t > t . To verify that (3. 11) and (3.6 ) are equivalent,
substitute this expression for fr, w, t) into (3.6 ) and differentiate
directly using the formula

al- f (x, a) dx = f ( (a), a) da-f ()(a) a) da + b f H (x a)d
~(a) dada (a) a

(3.12 )
for differentiating a definite integral with respect to a parameter. In this
manner it can be readily shown that our expression for f(r,w,t) does
indeed satisfy the differential equation ( 3 .6 ) .

The first term on the right hand side of (3 .11) is determined by the
initial value of the function f, the collision frequency v ,and the time
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lapse t-t . It is the solution of the homogeneous equation obtained from

( 3.6 ), while the second term is the solution of the non-homogeneous

equation (3 . 6 ) . If t-t 0 (to is the initial point in time) is greater than

the time required for the establishment of steady conditions, that is

t-t 0 > 1/v, then we can make the initial point in time in ( 3.11 )

approach - a. This defines the connection between the distribution

function and the electromagnetic field vectors E and B for a steady

(stationary) process. Below we shall take to= - C. In this case the

first term on the right hand side of equation ( 3.11 ) goes to zero.

Using the distribution function one may obtain the current density

J for a given species via the usual relation

j= q Swf d3w. (3.13

Reintroducing the subscript s to distinguish various species of charged

particles the total current density is written

I = J . (3.14
s -s

3 ~~~~~~~~~~(in)
Using ( 3.11 ), the induced currents I s , which are proportional to the

electric and magnetic fields in the plasma, can be written

(in) -m1 q2 dt d3w eVs (t
iis s s -t sc tb')-wY w,w W(0,t-t,w)

{E fR(0,t-t' ,w,) ,t')4[W(0,t-t' ,w) x B(R (0 ,t-t' ,wr) ,t')] }-

(3.15

Applying the space Fourier transform to our expression for the
(in)_

induced currents T s (r t) and expressing E and B in terms of their

Fourier transforms in k-space, we obtain
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s - t) 1 q2 d3r ' dt' d3w w (af /aw)s s .* so -y,w- W(0,t-t',w)

2d3 k ek'- R(0,t-t',w,_)-ik._ s (t-t')4-6 (k', t)

+ jW (0,t-t',w) x3 (',t') . (3.16)
Y'

Noting from (3. 10) that

R(0,t-t', w, r) = r + R (0, t-t', w, 0), (3.17)

changing the orders of integration, and performing the integrations over
d3r and d3k' results in the following expression

t
? Ok t) =_-m1 q2 dt Jw w (bf /w)-s s s - s0 - -y,w W(0,t-t',w)

ik R (0,t-t', w, 0) -V (t-t')

fd (t')+ [W(0,t-t',w x iv) ,t') /3 . ( 3.18 )

Carrying out a Fourier transform of s (k, t) with respect to time we
obtain

k, ) =-l q2 dt eit Jdt J d3w w (f /w)s S -co f co so - 'w W(0,t-t ,w)

eik R(0,t-t', w, 0) -vs (t-t')

(3.19 )f(S (k,t') +[W (,t-t' ,w) x (,t') }Y I I -~~~~

�I
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We make the following change of variables:

T = t -t
(3.20

= t'

which enables us to put g s(k, ) into the form

o

(k = -n' q2 dr T d3 w w (af /bw)
_S ~ ~~ S o so - -8, EW(OTW

.Vs T+iwr+ik'R(0,T,W,0 )

I d Ods.)+[W(0,T,W)xSk)] }e (3.21)

Noting that
co

f dgcS Lk, t)e tik,) (3.22)

and similarly for (, t) and replacing the dummy variable T by t,

we find that

(kc) m 1 q2 J dt d3 w w (f /w)
_ss s 0 so - -y,w- W(0,t,w)

eVst+iwtt+ik R (0,t,w,0)

{d (, w) + [W (0 t, w) x (k, Q 3.23)

Eliminating by using the transformed Maxwell equation (2.39 )

and factoring the quantity £ we obtain
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-s t ,@)= _ms q2 dt d3w w (bf 5 0 /bw) -Xw-W(0,t,w)
0

e-VS t+ it +i k-R (0, t' , 0) I X [I-ok W(O ttw)]

+1 k W (Ot,w) 4Y (3.24)
+W x -Y Y

Comparing our definition of the conductivity tensor a S, given by (2.43),
with (3 .24) we find that

= -m qf J dt Jd3ww (bf u(w/bw)_
S R-Y S S 0 ~~~so X, -W(O,t,'w)

e7 Vs t+ i(A + A R (, t, w,0) { IA_ [l-o lk W(0,t,w)]

+ J'kxW (OtwJ} * (3.25)

Using the expression for R given by (3.10 ) and expressing k in
cylindrical (kL, ap, kz) coordinates, we can write

- R( t w,0)=kl Wzb w [sin (° -bt sin(p -) k w t ( 326)

Introducing the identity

ik 1 bs (S° bs J (k w )eiP T 0) hp bSt

(3.27 )
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and using the equality

so)-~ -A,w fWV(Ot~w) ~\bta W/w) (3.28)

which presupposes fs(w = f (w which is true for distributions of

the form f o(w1, wz), we can now write the plasma conductivity as

co co

a =-mq2 Jdt J d3w w LA f_(w) |e_ J 
S1 VS 0 _ P

ip( >-i sin (p- )+[-vs+iw-i(p+y) Wbs-ikz wz]t (3.29)

where

1 -obs (3.30)(3

and A is the vector operator with components

L z[(i-J Ic w) bw+ JIz w, b , (3.31)
z

and

A0 EJ- 1 k1 Cos (P- t) bw w- w (3.32)

Performing the integration over t gives

a 1i l q2 k-1 lK3w ef -=im -Y q J I w w uIy fs

coy ( p i(p - ) -i tsin (p- 0)I- i ( W e (3.33)

where

W1 LZ + V - (P )/kz Al1 (3.34)
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and

0 1{[ w-(w+ivs-(p+l) bs)/kz eI

+ w -(W+iv - (p-) )/k 1 e3i(35) w a w a -IIz s bs z ,wzaw 1 w

+ Lw -(w+ ivS - P <bs)/kz fr . 3.5
z

Since we have already assumed that f o is independent of the azimuthal

angle , the integration over can also be carried out at this time. Noting
the equality

Jo ei~t ¢ t sin C dO= 27r (W) (3.36)

the result of this integration can be written

=i 2r mnf q2 k ei( )dw dw w S T

fO-y [ w (bf /6 w w(bf /bw
-2 (/sp w 1z ,s (3.37)
w - (W+iV s PW bs )/kz 

where S defined by
w = (3.38)

is the independent part of w . Thus
f1

S = 2a 2- w + l- 2 ) wZ (3.39)

Similarly we have also used the vector operator 0 where f isa a so
defined as the independent part of ( fso/bw), assuming fso is
independent of , hence

=V 2 - -t + ( - ) a .(3.40
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Finally, we have introduced the vector D, defined by

DX = - 2- w' k + (1- X ) p Y w-1 (3.41
x ~~z 5 I

Having obtained an expression for the conductivity of a plasma, we can

then combine this information with the Maxwell equations, as done for

example in the previous chapter. The result is a set of equations

governing radiation in homogeneous plasmas based on a kinetic theory

description of the plasma. We call these the "governing equations"-

kinetic approach.



CHAPTER IV

DERIVATION OF DIELECTRIC TENSOR

The approach we have taken has been to restrict all of the medium
complexities to the dielectric tensor. Hence, by modeling the plasma,
we mean giving an explicit form to the dielectric tensor. This chapter is
devoted to giving alternative expressions for the dielectric tensor based
upon our different plasma models.

We are going to analyze three plasma models. The first model is
based upon a hydrodynamic description of the plasma using scalar pres-
sure theory. We call this Model H and refer to it as the Hydrodynamic
Model. The second model is based upon a kinetic description of the
plasma and is referred to as Model K or the Kinetic Model. The third
model we shall use is derivable from both the hydrodynamic and kinetic
approaches using suitable approximations but not limiting the pressure to
be isotropic. It is sometimes referred to as the Full Adiabatic Model [10];
our Model A.

Model H

Model H assumes an isotropic pressure, that is,

I 0 0

= s = P 0 1 0 (4.1

The scalar pressure P is assumed to obey the adiabatic equation of
5

state

P N = constant ( 4.2
5 5

where y is the specific heat. In the linear approximation

dP = ( P / N ) dN 4.35 5 s0 s0 5

32
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where the equation

P = N K T ( 4.4)

relates the unperturbed pressure number density and temperature.

K is Boltzmann' s constant. Rearranging terms

dPs KT dN= m 2 dN (4.

where uS is the "sound" speed defined by

2u =y KT /ms (4.6)

The value of the specific heat V is a somewhat complicated function of

wave frequency and particle collision frequency [17 ], and different

values are obtained depending upon the assumptions which are made.

However, the various assumptions do not seriously affect calculated

results as long as one considers a linearized theory [ 58 ]. The actual

numerical constant can be absorbed by using an appropriate sound

velocity. In our numerical calculations we use y' = 3.

As a result of these considerations, the linearized continuity

equation can now be written as

N m u 2 V =-bP /t. (4.7)
so s s -s s

Since we have assumed that the various plasma constituents obey

adiabatic equations of state, it will not be necessary to use the pressure

transport equation. The momentum conservation equation ( 2.5 5 ) with

9 sx- ka now replaced by ? Ik becomes

s0 5 X (-i+ s +inX ) 2 r a qn m igte o A ' (4.8)

or, solving for 7sr and introducing the notation

( 4.9 )r 1 + i v / Y / s s= s s
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we have

?r =[m r (1-XAU)Y'(i q s/ k/N (4.10)sX s s s s s X so

Note that Y, like Xb' contains the sign of the charge.
We can solve for s in terms of (3 by forming the dot product

k * susing (4.10 ) and substituting for k ' sfrom the Fourier-
analyzed continuity equation which we write as

kc .7r/ = (p u2 Y c-i , (4.11)
- -s so s s

As a result of this procedure we obtain the relation

/N = (i q c 2/ D ) k_ (1 - )-1 ( 4.12)
5 s s s Y s V 4.2

where the complex normalized thermal speed squared is given by

fs u 2 /(c2 s) , ( 4.13)

and the complex "gyro-element" g sx is defined by

sx-(1 - As)2 4.14)

and

D = 1- E (n2 g + n 2 )( 4.15)
5 s ±s z

Combining equations (4.10 ) and (4.12), we get

Aiq [m r w (1-x ) (+s (1- Y D 1 n n ).( 4.16)

Therefore the mobility tensor elements sx are of the form

= i q m r (1 - -'[I ( 4.17)

(1 I Y s )-'/ D s I ( 4.17)



35

Defining the magnetoionic variable

X N q/ E m ) (4.18)
5 so 

and the complex magnetoionic variable

a =X /r , (4.19)

the dielectric tensor elements obtained from ( 2.6 2 ) are given by

K IA _ F2 ( X 1 [I + n n_(l-Vf3 f'/D ]. (4.20)
-V XV s 5 s _ )[ XV Y sn X Y-y s) s

In a cold plasma (i.e. one in which Es = 0), the dielectric tensor sim-

plifies to

K- y X KI y (4.21)

where

K = 1- F a2 (1 -X ) (X=1,-l,0) (4.22)
X s 

is a diagonal element of the cold plasma dielectric tensor. Since K is

neither a vector or tensor quantity, the summation convention does not

apply to it. In terms of KA X we can write ( 4.20 ) as

KA-=K I - E a 2 (1 - )-I (l-y 3 )-1 n n / D. (4.23)
-y X X-V s ss s s X -y s

Explicitly, for cylindrical (n , q, 9 nz) coordinates
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i-l -K1-~ t lE sas (1 -2 (4.24)

Ko Ko -- zEf z/D(.5
I Tii 

K0 = -n 2 C a 2/D (4.25)
00 0 z S S S

S

K = -n 2 ie a D (4.26)

K = 2- n n ei % (s a (1 -3 s) / (4.27)

Ko = - 2-2 n nz e jP T es a2s (1 +pS)-l/DS. (4.23)

The remaining components of the dielectric tensor can easily be obtained
from these if we note from the general form of KA that

K_ Xy (nn'w) = K- ', ) (4.29)
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Model K

In Chapter III we derived an expression (3.37 ) for the plasma

conductivity tensor using kinetic theory. If we now assume that fso

can be described by the two-temperature Maxwellian distribution

f N (2 u- u e/2usI wz/2ust (430

with transverse and longitudinal thermal speeds defined by

u2 KT /m, =KT /m (4.31 )
51 5I s 5i S SI

respectively, and insert this for f o into the conductivity equation

(3.37 ), we obtain

CT -i (27r) -2 E 2 k-l u-
2

U-
1 ei(f1-Y)p ' dw, 1 dw w

S[I-Y 0 SZ S S O 1 Z

S1 J J e w/2 u2
_ wz /2 u2

SLPf11 TP-V i

S U -2 -D w w (U-2 -u 2 )
5y Y I z snt s -_ (4.32 )

W z - ( i Vs - P 'bS)Az

where u (not a vector quantity) is defined by
s y ~u - u , u (4.33

We can reduce the number of tensor elements which we have to calcu-

late if we note the following symmetry property obtained from (4.32 ).

a (n,c)=u* - (4.34

The dielectric tensor, which is related to the conductivity by

K = I + i (E wf 1 as (4.35 )
- = 0 S

also obeys the symmetry relation
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K (n, Q = K*Y (n,- -w) . ( 4.36)

Hence, we proceed to calculate only K-1., Ko, K , K1 0 , and K0o; the

symmetry property makes it a trivial exercise to obtain the other ele-
ments of the dielectric tensor from these.

In ( 4.32 ), the integrals over wz can be expressed in terms of the
"plasma dispersion function" Z(C) (see Appendix D), and the integrations

over wI are all related to Weber' s second exponential integral [ 85 and

are found in our Appendix D. Carrying out these integrations results in

the following expressions for the dielectric tensor elements

I co_ 
Kl_1 = l+ X 2 n d--2 e s7 [Z( ) + 2 n d (-d /d ) Z ]s z S11 L p z S5 si 5 p

[P P (s (1+p-~ ps) I (s)+ pLs rP 4,S) (43

KOO= 1-,' X 2 nz ed-S% e s CZ'(C)Vl-pYs(I-ds /d )]I L)
5 Z SO ~ P L5 I I Sli ps

K1 1 = e12 <PY Xs 2-2 nz1 dS~l pS en'cs o+ (4.38)

I( o= -e Xs YS 23/2rl n'l d-1 e 1s, L1-PY (1-d g 

Z((p) [(p-1) Ip(lf1) + f11 I' p(ii)] (4.40 )

i~~p7 X/2-1 f 5 ~V'

K02 = -ei) X Y 2 n 1 n d 1 e L [Z(p)s z slis

2-n di (1 -d /d ) Z'(C ){I-(I1)I -1 (-II I(i.(4.39)
511l 5'1 si p PI p 5 5ss
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The argument Cp of the "plasma dispersion function" is given by

1 1 1

p = (+i v - P a )/2 2 k u= (1 +iv / p Y)/2 d n (4.42)=(c+i bs Z Sil s s S z

and the argument s of the modified Bessel function Ip is given by

fs= k2 U2s/ o 2 = n2 d /Y 2 (4.43)
Si bs ± 51 5

where d and d are the normalized thermal speeds defined by

d u /c 2 d u 2 /C (4.44
SIl SO S-I S-i

We also use the convention that

dZ(p
d C = Z (Cp (4.45

with similar relations for I' (ps) and I" (ts ).

Equations (4.37 ) - ( 4.41) are the dielectric tensor elements for

our kinetic model which we call Model K.
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Model A

The dielectric tensor for the Full Adiabatic Model' (Model A) is

obtained from approximate solutions to the "governing equations" which

were derived in the first few chapters. We find it illuminating to derive

this model from both the moment equations and the Boltzmann equation,

since such a procedure points out some of the similarities of the two

approaches.

Derivation of Model A From Moment Equations

Our starting point is the "governing equations" found in Chapter

II. We assume that the ambient plasma kinetic pressure is of the non-

shear type. This enables us to write the ambient pressure tensor as a

diagonal tensor. Allowing for differences between the pressure, PI

along the magnetic field of our magnetoplasma and the pressures, Ps

transverse to this field, we thus write

-P 0 0 ~ P 0 0 P -P 0 0-Si-Sil Si Sil

p=[= ° = [ P ° + ° P s±P . (4.46
O0 0 P- 0 0 P O 0 0 O

SI1 Sit

This expression for P has the same form both in the Cartesian and=so
P-W spaces. Evidently we can write

P l I + oa2 (4.47 IsoaX S a SA ax

where

sA = Si Psi5 (4.48

Inserting this into equation ( 2.59 ), we have

1 The model is full adiabatic because an adiabatic gas law is applied to
all components of the pressure tensor rather than to a scalar pressure
only.
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erX[-i +s + i bs (+X) ' {-iPS11 Ior k_ cSy -

iP 02 I k ? -iP V k -i P r y2k I 
sA a - Sy S s X sA Sa - y X

iP k -ip a 2 k -
si o sx sA cr sx

ilq mL[P d 2 k -P k X2£ +P or k Y-PA U2 k 4 A4
s S sA C X sA a X SA a X OAaX

From ( 2.55 ) we obtain the desired form of the momentum transport
equation.

(-i+v iouW)2 q m£-p 1 (4.5 s bs s CT s a sosa- (4

Inserting for? A using ( 4.49 ) gives
k k

(- i+ v +i a aO ) 1/, M-1 1 {P a - +s bs s s s CTa so fis j1 +iv 

k K I k k a2 k k
-A~~~r AXa- + aYi - (a -)/- +iP r ait/ +Wi -XX bs + wV ?c +A [--4--S
Vs +iVb(aX) cdivS W]~b(O+y)) J s l oi

X2k kAI a2 k k
-X Xu - y a -Y+ +q (m Wrf1 P

co+iV -W (0 AiV -co (a+y) Sy S S SAs bs sb

(y 2 _a 2 )k k (a2 - 2)k k I

s- bs + W) vs bs(O A) } (4.51)

Defining

u p 1 P =K mlT
s1i, A, ±- Pso slA, s sTA,±

(4.52)

and putting equation ( 4.51 ) into a form suitable for matrix inversion we

obtain
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bSCT i V k- X I-Y
T(-iw+V +iaw ) I +iu2 + - b Aa-

s bs a -v Sil .La+iV Was bs (a A)

k k a2 kk X k k Iai ]+iU2 - a-v -X X -y +
W~VsWbs 0 7 J s Lw +iv Wbs+iv +f (- )

a+iv -a) (o+y) _sAsys 0-V a)
s Wbs C+s C- W

(,Y2 -a:')k k (U2 X2 )k k I
a VI + -XX a-V Th ' y4.3
ss bs(a+ ) S Gbs (a- X) y( 4.53

The accurate inversion of this equation is a very tedious process.

Buneman [ 10 ] has pointed out that we may affect a first-order (i.e.

linear in temperature) inversion of this equation if, for those terms on

the left which contain components of the wave propagation vector k, we

substitute the expression for Sy obtained using the cold plasma approxi-

mation. The range of validity of this first-order inversion will be exa-

mined further when we re-derive Model A using kinetic theory in the next

section. To perform this first-order inversion, in those terms which con-

tain k we use

(Or ) =(-i+v +iyw q m7' (4.54)s y cold s bs s s y

which we get from ( 4.8 ) neglecting the pressure term. As a result we

can solve for s.
50o
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r= q m1l (-ixo+vSi a 'b s) u2{ (V_ 2 ) k ++iO b){+[+iv+

(C2-X2 )k kIa I u2 i ak+
__ ____________ SII L-'--- +

C+iv -b (a-X) -ic+v +iVWbs Lw+iv

c k I k k u 1

-X X a - + a 1sA
+ i Vs bs( X) o+iv - bs (a +y) -iw+Us+i Cbs

C2k k X kkXIO X k 
Ica i vco +V oW(aX) + oiVo(0Y)I 4.55

s s @bs s bs( 

From (2.41 ) it follows that the mobility tensor is identifiable with the

matrix multiplying 6 in ( 4.55 ). Therefore from ( 4.55) and ( 2.62) we

can write
(Y 2-a 2 )n n

K =I -E2X (+iZ -Y) {I+d a. +
0I-V Z-7s (a- A) s-SAlii Z + 1 +1 y

(-X 2_ )n n I d n n

l+iZ -(a-X)Y 1+iZ -yY +iZ
s S S S 5

n_ nIa- nn -Yd
1+iz -(o.-X) Y 1 +iZ -(F+y)Y i1+ i ZyY

a2 n n X2 n XnAI o2n n

[i Z Y+ 1 +i Z - (a-A) Y + +i Z -(a +Y) Ys 4 (4.56)
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In writing (4.56 ) we have introduced the following new quantities:

zS W

s u /C (4.57s II SAs sIIsA,s±L

In cylindrical (n, (o, n ) coordinates
z

n= 2-2 n e , n =n . (4.58)
I 0 z

Hence, writing the components of the dielectric tensor in cylindrical
coordinates we get

= s-7X (1+iZ Y) 1 {1 + d (1 + i z Y)
s S~~~~~~~~~~~~~~~

n (1 + i Z + (1 + i Z 2 Y )n+ (+ i Z Y )-1

•dAn 2 (1 + )1 [(, . z)1 ] l+iz 2 17

+ d n2 (1 + i Z _y ) (4.59)

Defining

r = 1+iZ
s S

a2=x/ , /r
S S s ss 

(sil~sA =sd ~As/ (4 .60)

the expression for Kj-. simplifies to
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K1 1= 1 - U a 2 (1-_3 {1+ Es n2 !i (1- (3)V[1+(12 ( 3 )-i ]

2 22 c n r (1- Ps(-rii + nl r (1-jpjs 11 Z 's S S- SA s 1. 

F1+ (-2(3 ]+ n2 (1 pS)}

Also, we have from (4.56)

Koo= 1 - Fj °us 1+ (S / r )2 n(1_ p2 1- +el/r )3 n

-s ~ ( ± n S 2)}
L SA SA s ± S J

K11= - a a (1- p 2 )-l (CS + cS) n ei2(P/r
s si A ±s

K10 = -- 2- n n e a a 2 (1-3 )- {( c S ] S

c (1-13 )Ps

K,-,= - 2 2n n e ° U2 f°,E /(Sr ) (-P) +(l-s)l I 11 )-4 11 s sI s -

csA (1- s) 

Noting from (4.56 ) that

KA (n , ) = K (n, -o)
-X V -

(4.61)

(4.62)

(4.63 )

(4.64)

(4.65 )

(4.66 )
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it is easy to obtain the four remaining components of the dielectric
tensor.

Defining the "gyro-elements"

gs,-1- (1 -

g +2 -- (li2(3Y 1 (4.67)
s±2 ~S

g sx -(1- (2

and writing the components of the dielectric tensor in cylindrical
p, n) coordinates we finally obtain

K- 1 =-nl ) a2 g2 {E 1 (1 + gs- rs } + { / 9 2
s-2S 5 S_5

s

[ n ( g + g gs 1 ) ] } ( 4.68)
z sA S_ Sil 5- 5- 5 1 J

K-1 =-n s gs fe (1+gs 2) /T } +{1 - ) o 2 g
S S

L z sA s SHSs+ SL[ n2 (Es\ s + csll g5s g5+ /1') ]}( 4.69 )

Kll =i- n 2 i2 S 2 (4.70K, 3 n L a S sx 47
S S

K-1 n= - n 2 a2 (4.71)
5 s

K1 0 : n nz 22 e a g g 5 -E F(1+g j 4.72)
S S
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K_10 n n 2- 2 e S° i f +g 

K = - n n 2-2 e'P ' °saL gLE + r g S (+ ]

K01 = -n1 nz 2 2 e1 $ £ 2[ sL% %1g+( +g+ 

S 4.73)

Koo = l z °s rfs S_ Sgx
s~~~~~ 4s4

Ko~~~~ 1 _ n 2-f [ C + 3 nz ]} .6

s s

These are the components of the dielectric tensor for Model A

as obtained from hydrodynamic theory.

In the limit where collisions are neglected, that is v = 0,

these components simplify to

K1-1 =1- X g {1 + d n2 g (g -1) + d Vn2 g + 2 n2 g__
S S S- Sjj Z 5- S1L s -
S

( 4.77)
Koo= 1 7Xs{l+d 5 [3 na +n2 ( 4.78)

S

K, = n2 e X d g (4.79)
S

K10=o 2-1£ n n eir Xg {d +d g (4.80)
Z L sgs- f SI sil _

s

Koi=~21~ n1 n (4.81

where Y replaces (3 in the "gyro-elements". The other com-

ponents can be obtained from these using the symmetry relation

K_ (n, K* ,
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Often it is of convenience to have the dielectric tensor components
expressed in spherical (n, , o) coordinates. We write the components
in the form

Kid I XI + n 2 K (4.82)

where Kt is the cold plasma component of the dielectric tensor defined by

(4.22 ) and K' contains the temperature dependent terms. The tem-
perature dependent terms are easily obtained via equations (4.68)-
(4.76). They are

K'jl = sin , U 5 5E (1 -gS~'OO sin s sA sxS si s s

2 2

Cos s S 3E (S/1S (4.84)
s S SI1 S

K'1 1 = - sin2 e , s a ga2 /r (4.85)
s Si 5 sx S

K'1 = 22 sin cos e U g [E g -
5 S sA S

E (1+gs )/rs1 (4.86)

Ko= 22 sin cos e 2 s [E g +
s s sA S

'S1 gs+ (+gs+) /rS .I ( 4.87)

The remaining components of the dielectric tensor are easily obtained
from these with the aid of the usual symmetry relations.

For the case when collisions are neglected, our expression for K
is consistent with the susceptibility matrix derived by Johnston [33 ].
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Derivation of Model A From Kinetic Theory

The starting point for the derivation of the dielectric tensor for

Model A from kinetic theory are the basic equations (4.37) through

( 4.41 ) which were obtained for the kinetic model (Model K). The

basic equations are rewritten, using the approximations

Ip I>> 1, ,L <<1 . ( 4.88)

That is, Z(Cp) and Z'(Cp) are replaced by their asymptotic expansions

and I) I'p (a) , I" (p), e are replaced by their small argument
p p P

expansions. The various expansions can be found in Appendix H.

Recall that if collisions are neglected

1 1 1

P =(Co-p~o )/2 k u=(1-pY)/2 2 n d2 , (4.89)
Cp (WPWbs 2Lz si= s z S1 48

while p.5 remains unchanged. Thus I p>> 1 means, physically, that

the frequency is not too close to the pth harmonic of the gyro-frequency.

From our definitions of u2 and u2 given by ( 4.31 ), we see that these

quantities are proportional to the temperature. Then the basic equations

are written in terms of these expansions and only quantities which are

first order in the normalized thermal speeds d and dS11 are retained

(sometimes simply referred to as first order in temperature) . The results

which are obtained are identical to those derived using a macroscopic

approach with suitable approximations (equations (4.77 ) through

( 4.81 )). As a result of retaining only those quantities which are first

order in temperature, only the terms in the infinite series, F , with
p= _ co

p • 2 contribute to the final expression. From this manner of deriving

Model A, it follows that Model A is a limiting case of Model K.

Unlike the derivation of Model A from the moment equations given

in the preceeding section, here the range of validity of Model A is given

explicitly by the conditions (4.88 ). These conditions specify the

regimes where Landau and cyclotron damping are negligible [37 1.



CHAPTER V

RADIATIVE POWER LOSS

Free electric charges, both ions and electrons, which are moving
at suprathermic speeds through homogeneous magnetoplasmas lose some
of their kinetic energy due to the fact that they radiate. When the plasma
is very tenuous so that collision effects can be neglected, this becomes
the dominant source of energy loss. In this thesis we consider radiation
from both single point charges and also from macroscopic distributions of
charges. In the latter case we choose a distribution of charges which is
intended to simulate a bunching of suprathermic charged particles which
may then radiate coherently.

We shall also consider radiation from satellite-borne antennas.
Satellite-borne transmitting antennas in the ionosphere have radiation
characteristics which are often very different from their free-space char-
acteristics, especially when they are being driven at frequencies com-
parable to the natural frequencies of the ionospheric magnetoplasma.

In order to compute the radiated power from either a free charge or
(ex)an antenna, our approach is to compute the quantity J E dr over

the volume of the source. The problem is simplified if we first Fourier
transform the external current densities, (ex) and the macroscopic
electric field E in the plasma. This approach has been successfully
applied to radiation problems using cold plasma models [ 40 ], [50 ].
We will use this same method for warm plasmas. Therefore, in this
chapter we shall first compute the Fourier transform, S (e) for various
radiating sources. Having obtained the Fourier transformed (ex) and
using the formal expression for the Fourier transformed electric field 
obtained in Appendix C, we then write down the formulas for the power

50
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radiated by each of these sources. The chapter concludes with a dis-

cussion of reversible and irreversible power.

Source Currents and Their Fourier Transforms

Current Density for a Spiraling Point Charge

The current density, (pt), for a point charge of rest mass M and

charge Q (positive or negative) spiraling with velocity V about the z-

axis, which we take as being oriented parallel to the external magnetic

induction B, is given by

1(pt) (r t) = QV(t)6 (r-r (t)) ( 5.1

where the position vector is given by

A ~~~AAr(t) = e aycos (t/y) -e yaysin (t/y)+z V t (5.2

and the velocity is

A AAV(t) = - ex VI sgn sin (Vy) - ey V sgn 2 cos t/y)+ z Vz. 5.3

Q2 is the signed gyro-frequency of the spiraling point charge .= Q B /M
0

(negative for electrons and positive for positively charged ions) . The

non-relativistic gyro-radius a = V / | Q and y is the relativistic ma s s
±~~~

correction factor given by y = ( _ 2 _ )-2 where = V /c and

Pz = V /c. The function sgn 0, is defined to be +1 when O2 is positive

and -1 when Q? is negative.

In terms of P-W space, these equations can be written

r (t) = 22 -it/ A1 2-2 a y ei /V+ V t (5.4)

V(t) = - +1 i 2-2 V sgn S2 e iS t/y +

-12 V n Mi~t/y + \ A 2 V sn e A .
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More concisely, we can write

-iviT/2 1 -i Vt/y (5.6V t)= e 2-2 e56
V V

where the vector component J is defined by
V

Ov= v2 V sgn V,+(-v2) 22 V .5.V ±z

These equations are used to compute the Fourier transform (p The

integration over space is trivial because of the delta function appearing
in ( 5.1 ). The result of the space integration is

(Pt) -i r (t) -ik r t ( 5.8 )
V Lk t V

Referring to Appendix A, we can write k r (t) = k V rV (t). Noting that

in terms of cylindrical (k, p, k ) coordinates

k =2 2k (5.9)

equation( 5.8 )can be written using ( 5.9

(Pt) Lk, Q dt V (t) e-ikL a y cos (2t/y + ) -i(k V -)t (5.10
V 

Using the property of Bessel functions that

-ik =a cos (St/+S) - N J (k a y) e (5.11
p=-= p ±

( 5.10 ) can also be written

9v (,C) = Q Jp(k± ay) e

dt V (t) e i(-kz Vz -p / y) t (5.12)

Inserting for V V(t) and integrating we get



53

I - V 7/2 (Pt) L Q) = 22 I Q- e F/ j (k ay)
V V P_2 .p ±

-ip((p+7r/2) 6 (-k V -(p+ v) Q/y) * (5.13

In terms of the refractive index, n, this becomes

(Pt) 1 (u)/2 
9 n,co) = 27 7r Q/ e vc/ Jp M

-ip(p+7r/2) 6 (C-n C o - (P+V) Q/Y) (5.14)

where

u = k a y = n a y/c. (5.15)

Cerenkov radiation corresponds to V = a = 0, which means only

the fundamental (p = 0) will be non-zero.

Current Density for an Extended Charge

In order to gain insight into the problem of coherent radiation from

a bunch of charges, we shall also consider the problem of Cerenkov

radiation from a uniformly charged ellipsoid (el) of revolution of mass M'

whose center of mass, located at x = 0, y = 0, z = z, is moving parallel

to Bo with a velocity Vz e as depicted in Figure 1 . The ellipsoid is

assumed at rest with respect to its center of mass.

Bo >~~~B

Fig. 1 . Sketch of geometry of charged ellipsoid.
The ellipsoid is fixed relative to its center of mass



54

The axes of the ellipsoid are of lengths g and h as shown so that

the volume of the ellipsoid is given by = (4/3) 7r g2 h. If Q' is the

total charge contained within the ellipsoid, then the current density for
such a source is given by

(el) (Q'/V(t) ,inside ellipsoidf (r t) (5.16
0 outside ellipsoid.

If Q'/M' = Q/M, which is the case we wish to study, then our previous

formulas for the position and velocity of a point charge apply here to the

center of mass of the ellipsoid.

The Fourier transform of (el) is given by

( , ) = (Q'r) fdt V(t) vol.Sofe1 d3r e5kr* +o (5.17)

In order to perform the last integration we need the equation for the sur-

face of the ellipsoid as it moves. This is given by

(x2 +y2 )/g2 + (z-z )2/h2= 1 (5.18)

where z = V t.
0 z

Making the change of variables

77= zo , ( 5.19)

the Fourier transform of J (e) becomes

(el)coikzV-wt9 (i,@) =(Q'/T) J dtV(t) eizVz o)t

fs dx dy d 7 eikx x-iky yikz1 ( 5.20)
vol. of el.

which is nearly identical to what we had for a non-spiraling point charge

with the exception of the integration over the ellipsoid volume. In fact,
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it will be convenient to write

(el) = D(gh) (Pt) (5.21

where, in k-space,

D(gh) dxyQe ) .1 d d 7 e-ikx x-ikyy-ikz71 (5.22)
vol. of el.

Switching to cylindrical coordinates via the transformations

kx = k cos S, ky= k sinS, k=k (5.23)

x = p cos @, y = p sind , 7 = 71

and making use of the identity

cos (A - B) = cos A cos B + sinA sin B (5.24)

our expression for D(g,h), which we will call the "form factor",

becomes

D(g,h) = Q (QT) dJ d1pdp d n

e-ik±pcos (p- cD)-ikz 7 (5.25

where, on the surface of the ellipsoid,

?7=±h/ 1-p2/g2= /f(p . (5.26)

The integration over 71 is straight-forward, while the integration

over b is given by

27r -ikL pcos (4 -J) d@= 27rJI (k p) (5.27

0
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Hence, the "form factor" becomes

D(g,h) = 4r Q' (Q T kz)1 ijg d p p 0 (kI p) sin (hk p I ).
0

(5 .28)

From 26,p.761 ] we find that this integral is evaluated. Hence
we can write

D(g,h) = 3 (Q'/Q) (r/2)f x-3/2 3/2 (X) (5.29)

where

- (k2 g2 +k h2)1 =(/c)(n 2 g2 + n2 h ). (5.

Note that in the limit g - 0, h - 0

L3/2 z 27 2X3 /2 /3 (5 .3 1)

so that for a point source with Q' = Q, the form factor D(g,h) 1.

Current Density for an Electric Dipole Antenna

For the calculation of many physical quantities, like the fields
at great distances or the real power radiated, many current configur-
ations (,t), which are concentrated in an electrically small region,
can be considered equivalent to an elementary dipole (see e.g.[76]).
Therefore we shall examine the radiation from an oscillating point
dipole whose dipole moment P is specified

P =p cos Wo t 6 (r) (5.32)

where o is the angular operating frequency of the antenna and p is the
static dipole moment. The equivalent static dipole moment is given by

P = L' p(r',t') d3r' , (5.33)

where t' assumes the value which maximizes the integral. We can also
think of p as being equivalent to two point charges +Q and -Q separated
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by a distance d, such that

P = Q d (5.34)

where the vector d extends from the negative to the positive charge.

Assuming that the charge density varies in time like P, we can also

write

p=-Q [ 6 (r+ 4) -6(r - d)] cos t. (5.35

The current density associated with this oscillating dipole is given by

J=b P/ t =-Co 0 p sin o t 6 (r). (5.36)

Allowing our dipole antenna to move with the non-relativistic

velocity V with respect to the undisturbed plasma, the current density

then becomes

J(r, t) = -w 0 p sin Co t 6 (r -Vt) -

QV cos o t [ 6(r + d -Vt)- 6 (r d -Vt) 1. (5.37)

Treating the case of a dipole oriented parallel with B and moving along
A A ~~~A

B0 (i.e. letting p = pz z d=d ez 8z, and V= Vz ez ),the current den-

sity is written

Jx (r, t) = y (I, t) = O (5.38)

(I, t) = - p sin oot 6L( -V t e )-QV Cos W t[6(r+Vd e -V te
J'zL 0 Z' co 0 

6(r - d -V t )]* (5.39)
2z z *z z 53

Applying the Fourier transform to the v - component (P-W space)

of the current density and performing the space integrations with the aid

of the delta functions, we obtain
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(1, C) = -1 (, ) 0 (5.40)
~0 (,C o Pz sin ote ikZv t+iutdt-

Vz Q 2 i sin(k 2 d ) I t 5.41

Since we are assuming our dipole is very small, we take

1 k d < < 1. Therefore, 2Q sin ( k d ) can be replaced by2 z z 2 ~~z z
kz pz. Thus we can then write

( Co) = - C P sin t ei(Co kzz)tdt -
0 ~0

z iz Pz cos o t ei(w- kZVZ)t dt (5.42

The first term represents a current density which will excite radiation due
the oscillating dipole moment, while the current density represented by
the second term will excite Cerenkov radiation. In most cases, the
second term is negligible, however, at very low frequencies and small

wavelengths w0 can become comparable to V kz and in that case the
Cerenkov contribution to the radiation becomes important. Thus the
Cerenkov term will manifest itself first in its effects on thermal mode
excitation, since these modes have the shortest wavelengths.

The remaining integrals over time can be expressed in terms of
delta functions, so that we finally obtain

(k, o)=i 7r w0 pz [ 6 (o+o - kz Vz) - 6 (-co -kzVZ)]-

i 7r kpZ Vz [ 6 ( + -k VZ)-6 (-Co - k Vz)] ( 5.43)

or, in terms of the refractive index and the normalized velocity 3= V/c,
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y0 ( n, ) i7r ( 0 pZ- nz P z ) 6 ( +o -n fz CO)

-ir (o pt nz pz W z) 6 ( o-Wo - nz Z h.( 5.

Current Density for a Loop Antenna

The current density for a stationary filamentary loop antenna of

radius r , oriented with its symmetry axis parallel to the magnetic field

Bo can be written in cylindrical ( p, t', z ) coordinates as

J (r, t) = Ir p- 6 (z) cos Wot e ( 5.45)
- ~~0 O P0 0

where o is the radian operating frequency and I is the maximum current
Ain the loop. When the antenna has a translational velocity V Vz e 2

the current density becomes

6 (p -r) )
J(r, t) = I r6 6 (z V t) cos Cot¢e (5.46

0 "O ~z 0 

A

The unit vector e is related to the Cartesian unit vectors via

A A ~~Ae-sin x + cos e . (5.47

Expressing ex and y in terms of the basis vectors for P-W space, we

get

= =12 [eio Aj e-i ]A (5.48 )ee -e e 1

Therefore in P-W space we have for our loop

IV ' t) = 2 e Iv 0 Ir) 6 (z - Vz t) cos W t . (5.49 )

The Fourier transform is given by
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9v (k, ) = pd pd dz dt V (r, t)

e-i(kx pcos + ky p sin + k z - t)
( 5.50 )

Inserting for Jv and performing the p and z integrations leaves

i
9V Lk, Co = Ir vi 2 2 d dt cos wot

e-i(kxro cos + kyr0 sin - v )-i(k V - o) t

Expressing k in cylindrical (k, S°, k ) coordinates, we can write

e-i (kxro cos + ky ro sin )= e-ik r cos ( - 0)

Using the identity

( 5.51 )

( 5.52 )

-ik r os ( - -=(k )i ip (- + r/2)(53e 0 o rs J (k r ) e ( 5 .53)P= p 0

the integration over f is easily performed yielding,

9 (k,)= I r v i 2 7r (k rV ~ 0 0 -V ±0

eiv( r/2) f dt cos t -i(kzVz t

The remaining integral over time can be expressed in terms of delta

functions

;v (k,C)=I r vi2 vr (k r)0 0 -V ±0

ei v (q+r/2)[16 (+o -k V) + 6 -o k V . (5.55)

In terms of the refractive index, this is
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V L (, ) = I0 r0 v i 2 r 2 (u)

e( LUI/)o+Co nzoP z + 6(JW-O- n ( ) 5.56)

where the argument of the Bessel function is

u = n r / c, ( 5.5 )

and pz = Vz/c is the normalized velocity.

Power Loss Formulas

This section contains the formulas for the power radiated by the

various current sources treated in the previous section. The formulas

are derived in such a manner as to be independent of the particular model

(A or H) chosen for the plasma. For each source considered the power

loss is written in terms of a single integral which can be readily eval-

uated numerically.

Power Radiated by Point Charge

The rate at which energy is radiated from a current source

If(ex) t) is expressible as

P (ex) ( r ,t) . E (r, t) d3 r. (5.58

The superscript (ex) indicates that this current is external to the plasma

in the sense that it is not used to compute the medium constitutive

relations. In terms of polarized-wave space the radiative power loss

becomes

P = ~ t V) (r , t) E (r, t) d3r. (5.59

Representing I (ex) and E by their Fourier transforms, we obtain
-v V
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P = - (2r) 8 d3r d3k d d3k' do' (e) k o,) (, Co)

i (k * r - i (' + C) t
e . 5.60)

In terms of the refractive index, this is

P (27r)-8 c 6 d3 r d3 n d d3 n' d' o3 II3o(ex)I(n wC)

, (n, ) ei(n' C/c + n /c) * r -i(Co'+C)t ( t5.61)

Changing orders of integration and integrating over r, we get the factor

(27r) 6 (' /c + n /c) = (2rc)3 I ' 1-3 6 (' + n /') (5.62)

which enables us to integrate over n' getting

p = - (27rY5 c- 3 d3 n d d' co3 W(-n C/C')

(n , ei (o' + ) t (5.63)

Inserting for (Y using ( C .5 ) and substituting for (ex) our expression
V -v

(5.14 ) derived for a spiraling point charge, the power loss becomes

P = -i Q
2 (16 ir3 c3 )-' f d3n d d' Co2 sgn o0 ~~~~-V a

ei(v a+ p - p')7r/2 eCi( + )t e-i(p + p -v+ )s°

Av A 1 6 (C'+n C o13-(p-v)Q/y) 6 (co-n zW CZ-(p'+c) /y)-

(5.64)
The argument of the Bessel functions is u = n a y /c. Expressing d3n

as n dn d dn , the integration over gives a factor (27r) when

P'= -(p - v+ a) and zero otherwise. Hence,
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P =-i Q2 (87r3 E c 3Y 1 n dn dn d d' Co sgn e(va

V e~ iA+ C o-1 Ip J 1+(J 6 (co'+ n C 13- (p-v)Q/y)

6 ( - n Co1 + (p - v) / y). ( 5.65)

Integrating over w' reduces our expression for the power loss to

P=-i Q 2 (87r2 E c3)-' j n dn dn do u2 sgn F P e (
o 1 1 z p=_-v -VC

A' XV- I jP-v+ 6(Co-n .C 1z +(P-v) 5/y)

e-i[w-nz C Pz + (p- ) Q/y ]t (5.66)

Writing

P= of j d+ I 0 do, (5.67)

assuming that X (n, C) = Xv (n, - Co), and making the following

changes of variables C - - C, v - - v, a - , p -p in the integration

over negative frequencies, we find that

CD co co

P= Wd+ J dwo=2Re J dcD. (5.68)
0 0 0

Thus
a

P =-Re i Q2 (47r 2 E c3 )-l Sdwo n dn dn 3

c d d A J Jei(V - a) Tr
r, P - A- IX I IfV+ 

P=_ - -v a v-ta p p-v+a

6 (Co - n C 13 + (p - v) Q/y) ei[onz o13z + (p- ( 5.69)
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Replacing p by p + v, we get

co
P =-Re i Q2 (47r 2 E0C 3

)1 r du) f n dn dn C 2

0± 2

co v d A A 1 I I ei(v- a)7rp= co -V a v- a P+V P+a

6 (Co-n 3 + p,/y) ei( nz + Q/Y)t 5.70
If 0,

6 (o-n c3 + pN 1I1,1I3 '16 (n P-1 (1+pY/9)(5.71

which allows us to integrate over n. Thus for z 0,

P = - Re i Q2 (47r2 0 Vz Ic 2 )-1 d. f n dno
0 0

co

F, PV I&*aX X AA - I I ei(v a) P=_o-v a v-a p+v p+a In =PW1 (1+pY/y)
2 Z

(5.72)
where

nz = 1 (1 + p Y/y) (5.73)

is the so-called emission equation for a spiraling charge. Here

Y- lQ/ . (5.74)

The only plane waves which can exist in the plasma are those
whose refractive indexes satisfy the dispersion equation A = 0. Knowing
the roots of the dispersion equation, which we assume can be written as
a polynomial in the variable n, the fundamental theorem of algebra
allows us to write

= C() 11 (n2l - n2 ) (5.75
m I ±m
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where nm represents the m- root of the dispersion equation. Hence

we write the power loss as:

P = -ReiQ 2 47r E V c 0 do dn n o i e (v- a)r
o 0 p= CO

-' X C (c) IT (n 2 -n
2 jL If I

V a V-a m ± im P+V +a =
n= -1(l+p Y/y )

(5.76)
Write the power loss as

c~~ 2 b¶ 2I~~ i 2 ~- c 0' o
P = Re i Q2(4?r2 V c2c dw C(Co) -v a

co V_ Cr P+o p c

a v-a Jp+v p+a n n fIl(n2 n2 ) n I ±n57
0 m ± ±m n = 1 (1+pY/y)

From Appendix C we note that the terms of the adjoint matrix have the

form n where k = 0, 1, 2 .... Referring to Appendix D where

we have evaluated the integral

ca O+ 1 If+ V(ax) 1P ax

$ H (x2 _ z2 ) dx (5.78)
° m m

and setting p = v - a+ 2k, x = nL, etc. we find that the power loss can

be expressed as

P=RQ2 (8r~V~ 2 Y1 fdo i(V-a) itP = Re Q2(81r f V IC)~ SdZ2 P( -P Vv e( )
0 z C(Co) _ = c - VaC

H (1) .Imn.> 0
A If o JP+ V IlI (n2 -n2 ) P+ ' ' (5.79)
V- a P+ Vm#zj ±J pH (a Im n < 0

nz 13 (1+p Y/Y)

See the paragraph following eqn. (5.81) for a discussion of the expression

for P corresponding to (5.79) when Im n. = 0.
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The Hankel functions have the same argument as the ordinary Bessel
function, namely u = n a y C / c .

The subscripts j and m range from 1 up to the number of wave

modes which can exist in the plasma at any given frequency. For a

cold plasma there exists two modes, for a plasma with only warm

electrons there exists three modes, and for a two component plasma

with both ions and electrons warm there may exist up to four wave modes.

When we do not allow for losses in the plasma, the imaginary part of

n is either zero or else the roots occur in conjugate pairs. Suppose
the roots n and n are conjugates and let be defined by

ca n
P=Ref F J d (5.80)

o j=1 I

Comparing (5.79 ) and ( 5.80) and assuming n = n*2 we can write

co n co n
P=Re* [ ]d - 1* +Fo J. dw= Rej , J.d . ( 5.81)

o j=3 oj3

Hence, complex conjugate roots contribute no net radiation losses.
The case when Im n = 0 is more difficult because the integrand

of (5.77 ) has a singular point on the axis of integration. Several
methods are available for determining how to deform the contour of
integration so as to avoid this singularity. Perhaps the most direct
method is to allow for small collision losses in the plasma in order to
determine how the poles n j move off the real axis. This then indicates
how the contour of integration should be deformed. Once the proper
integration path is determined, we can return to the limit of a lossless
plasma [ 24 ]. Another method is to represent the electric field excited
by the source as a superposition of plane waves and require that each

constituent plane wave carry energy away from the source [ 20 ]. Still
another method is to invoke causality which requires that the source
current must preceed the excited field [ 79 ]. These are all examples



67

of what is usually called the "radiation condition" and they all give

equivalent results. The "radiation condition" must be invoked in order

to determine which solution (equations (5.79 )) is physically correct.

Electric fields which obey the "radiation condition" are often

referred to as "retarded" or "outgoing" fields and denoted by ret or

Et. Fields which do not obey the "radiation condition" are referred

to as "advanced" or "incoming" fields and are denoted by E d or Ein.

Note that in (5.79) one equation represents a power loss due to the work

done by "retarded" or "outgoing" electric fields while the other equation

refers to the work done by the "advanced" or "incoming" electric fields.

In the section on reversible and irreversible power which appears in

this chapter, we discuss the computation of power loss using "incoming"

and "outgoing" electric fields.
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Power Radiated by Extended Charge Source

For the extended charge source discussed in the first part of this

chapter and for a collisionless plasma, the power loss formula is given
by the p = 0 term of equation (5. 79) with the quantity D2(g,h) (see
equation 5 . 29) multiplying the integrand.
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Power Radiated by Electric Dipole Antenna

The physical quantity we wish to compute is the time average (over

a period 2r/o ) of the power lost through radiation, P. This is given by

27r/co
P = - (WO/27r) ° J I(r, t) E (, t) d3rdt. (5.82)

0

Expressing the dot product in terms of P-W space, applying the Fourier

transform to J and E, writing the result in terms of the refractive index,

and integrating over r and n' as done for the case of a spiraling charge,

we obtain

27r/

P = - (2iTO6 c-3 Co dt n dn± dnz d( d d'1X3
0

(n C/C', C') cv (E' C) ei(o + C) t 5.83

Considering the case of an elementary electric dipole antenna

oriented parallel with B and moving along the direction of the magnetic

field of an anisotropic plasma, we substitute expression (5.44 ) for the

current density into ( 5.83 ) and replace in (5.83 )by ( C.5 )to

obtain

27r/
p = i(64 4 c3 Co 2( / 0 Cdt d3 n dwo do'C ,3

0

( 0 PZ+ nz pZ CoP z) 6 (' + 0 + n 13 C)

(W p - n P C oz) 6 ('-C 0 + nz PZ)

e i(o +C)t Co1 A-i X [ (o z - n p co ) 6 (X+x -n P3 C)

-(o p n p o ) 6 ( - o -n P C) -
0222 2 zW 0 ( 5.84 )
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Integrating with respect to and ' using the delta functions and per-
forming the time averaging results in the expression

P = - i (3 2 r c J u' Id3n Co sgn C o p2 Il-n 1 -3

A- X IIL= C /(l-n 1 ) I- II}/(1-n
0= - O/( z z.

Expressing the index of refraction in terms of cylindrical (n, p, n )

coordinates, the integration over 9yields an additional factor 2r. The
symmetry properties of the integrand allow us to write the result as

P = - Re i (8t 2 c 2 )-' n dn dnz 2 0 Z X

(1-n z ) -3 & = /l- n 
Ia= o/l nz 

( 5.86)

Writing the determinant A as

n
A = C II (n2 - n2 ) 

M I I ±m
( 5.87)

we see that the integral is closely related to ( D. 1 ) when the

plasma is collisionless. To see this set s = t = 0 in (D. 1) and then

take limnit Re I x (D. 1). Evaluating the integral over n in this manner

we obtain the following result for a collisionless plasma

(5.85 )
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P = i S (16 it c3 )1 dn p Co 00X Z(-nz z

n
C ()m (n2j n2m ] ',,,/(1 (5.88)

The sums and products range over the various propagating modes which

can exist in the plasma. The sign of ( 5.88) is chosen so as to satisfy

the radiation condition. The remaining integration can easily be performed

numerically to yield the total radiated power from this antenna.

Note that when nz = l/Z1, the integrand has a singularity. This

singularity can be removed by allowing for a dipole of finite size.

These findings are in agreement with those given by McKenzie [ 53 ]

for the case of a cold uniaxial plasma.
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Power Radiated by Loop Antenna

The time averaged power loss P can be expressed as

limit 1 1Tp lt - 0 IT dt d3r Jr (, t) E ( , t) *(5 .89)T~ ___ 

Following our usual procedures, we write this as

-limit 1 f2Tdt (2i0- c- 3 d3 n d d I o 13
T-c T 

- T

9-V (-n /wo', ) (n, ) e . ( 5.90 )

Treating the case of a filamentary loop antenna oriented with its

symmetry axis parallel to the magnetic field B and moving with a
Avelocity V = Vz e, we substitute for 9_ Vfrom ( 5 . 5 6 ) and insert for 5V

from (C.5 ). The result is

I r 2 i
p =-limit I6 0 C j T T dt d d

o2 sgn VJ ;\ af A-1 ei(V+a)7r/2 e-i(W'+ )t
V V-a -ar

{L (O'+ + n z z 0 z z

6 (+ o + n C oZ) 6 (-w -n Co Z +

6 (' -o z+ nz W z) 6 ( + z 0 z WZ

6 ( - 0 + n P) z -6 ( - 0 Z )} (5.91)
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Performing the time and radian frequency integrations and taking the

limit, we obtain

122
00

ei(v+ a) 7r/2 (

{ " } * (5.92)
CWC (1-n P)_1

Assuming the usual symmetry property, KV a22n, ) = K* va(, -) for the

components of the dielectric tensor, the power loss can be written

I28 i22.
P = - Re87r c3 S nod nIdnz dp (1-n D) -1

Co vJ A a J A-' ei(V+a) 7r/2 (5 93
V -a -a Co/(l-n 

Writing out the summations and performing the trivial integration over p,

it is easily verified that

P =-Re 2
0 ca0 J ndn 1 nz A

yy (1-n 13) /(1 ). (5.94 )
0 

Since the integral over nIis of the form assumed in ( D.1 ), this inte-

gral can be evaluated., The expression for the time averaged power loss

then becomes
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n I2 r2 7r n
P = 4 3 R d J (u yy c() (nj m

n H1(U) Im n > 0

-H1(2(u) , Im n < 0
Co= C 0 /(l-nz Z

The argument of the Bessel functions is

u. = n C or /c. (596)

The sum over j is a sum over the various propagating modes which can

exist in the plasma.

When Im nj = 0, the appropriate expression for P is the solution

given in (5.95) which satisfies the radiation condition.
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Reversible and Irreversible Power

Previously, we wrote the expression for the power radiated

from a point charge source I() as

P J(ex) E d3 r (5.97)

and we required that E obey the "radiation condition". Thus, we actually use

P=- (ex) OUt d3r. (5.98)

For a point charge spiraling in a vacuum, a different formula is

customarily used, namely [64],

2 J I L - E in) d3r-. (5.99)

In this section we intend to show that both formulas (5.98) and (5.99)

yield identical results for a lossless plasma.

Having already evaluated (5.97), the proof that (5.98) and (5.99)

are equivalent for a charge spiraling in a lossless plasma is rather simple.

From (5.79) we find that the two expressions ( ex E out d3r and

J(ex) . Ein d3 r are given by

ca c

Q2 (8EI V c2) l 1' d2Co C( ) I 2 v e i(v- )
0 z J0 C 0 ] p ) V

A~-~ J~+~ Jf~+~ ,Th (ni. - n2)- (5.100)
v -ar P+v TP+(J rfjl j 1n m

where one solution correspoi-ds to using Eout aid lLhe other corres-

ponds to using Ein. Since the two solutions are negatives of each

other it follows that (5.99) is equivalent to (5.98).
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We should note that this question of what is the proper expression
to use for calculating radiation losses in a magnetoplasma is not new.
Several years ago Lee and Papas [46 1 suggested that the so-called

"infinity catastrophe" which predicted infinite power radiating from a point
dipole located in a cold magnetoplasma [15,73,87 ] was due to using
only outgoing waves as in (5.98 ) instead of using the "correct" com-
bination of waves as in (5.99 ) when computing radiation losses. The
question was vigorously argued in a series of articles which appeared

shortly thereafter [44,45,72,83 . More recently, the issue was re-settled
by Snyder and Weitzner [71 ] who showed that the assertion made by Lee

and Papas was false, and that as far as real radiated power from a Hertz

dipole is concerned, both formulations give the same results. Hence,
our similar findings for a spiraling charge source are not completely

unexpected. Thus it follows that for both antennas and free charge
sources, either formula (5.98 ) or (5.99 ) may be used for computing
the radiation loss.



CHAPTER VI

NUMERICAL RESULTS

In this chapter we present some numerical results for free charge

sources obtained by using the plasma Models H and A described in this

thesis.

Results Using Model H

The background plasma chosen for this model is composed of

thermal electrons and protons with an isotropic temperature of 2000 0K.

As pointed out in the discussion following equation (4.6), the value of

the specific heat y' is somewhat arbitrary. Our results might also be

thought of as representing a 60000 plasma with ,' = 1. All our calcula-

tions are for the "operating line" R2 2 /f 2 ) = 0.4 as shown in Fig. 2.
9 fe pe

10

10 7

10 -

Ye-

lo-l 101 jo3 xe 05 107 109
Xe

Fig. 2. Sketchl of the "operating line" R2 =
superimposed on the CMA diagram
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The "operating line" intersects the principal cutoff and resonance lines
at the points shown on the CMA diagram of Figure 2. The corresponding
values of X at these intersection points are given in Table 1.

TABLE 1

VALUES OF Xe CORRESPONDING TO PRINCIPAL RESONANCES
AND CUTOFFS FOR THE OPERATING LINE R = 0.4

Figure 3 gives the power spectral density for a non-spiraling
electron. For the non-spiraling electron, the total power spectral den-
sity consists only of the Cerenkov term p = 0. As expected from cold
plasma results [ 52 ] , [ 80 ], there are peaks in the power spectrum at
the upper and lower hybrid resonances. The cold plasma results yield
infinities in the calculated power spectrum at these resonances. Most
noticeable when thermal effects are included are the additional modes
which appear. These are mode 4, and an extension of mode 3 to frequen-
cies above the UHR. The numbering scheme used here is of no particular
physical significance, but rather for convenience in discussing the
results. Note that a considerable proportion of the total power is in
the form of radiation in the thermal mode at frequencies just above the
UHR. This thermal mode has its origin in electron temperature effects

whereas mode 4 here has its origin in the ion temperature.

Xe Name of Cutoff or Resonance Log Xe

.537 Electron cyclotron cutoff -0.27

.714 Upper hybrid resonance -0.15

1.00 Plasma cutoff 0.00

1.86 Ion cyclotron cutoff 0.27
2.50 Electron gyro-resonance 0.40
6.43 x 103 Lower hybrid resonance 3.81

8.43 x 106 Ion-gyro resonance 6 93
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Fig. 3 . Power spectral density for a non-spiraling electron

Figure 4 shows the effects caused by the spiraling motion of the

source charge. Two very pronounced effects are immediately noticed:

first, the power spectrum exhibits an oscillatory pattern and secondly,

the spectral power density in the thermal modes is greatly reduced from

the non-spiraling case shown in the previous figure. The oscillatory

pattern is due to interference between waves excited at different points

on the orbit of the spiraling charge, and the overall decrease in the

spectral power density amplitude for modes 3 and 4 is due to the apparent

charge smearing effect the rotational motion gives. This apparent

smearing effect is very similar to that obtained by considering finite vs.

infinitesimal electric dipole antennas [ 73 ], and most affects those

waves which have small wavelengths in the radial direction. Note that

the upper envelopes on the oscillatory patterns somewhat resemble the

shapes of the corresponding curves for the non-spiraling charge. We

should point out that in certain frequency regimes relatively few points

_131C
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have been plotted which accounts for the rather jagged envelopes in the
oscillatory patterns forX less than 0.5 or greater than 2.5. In parti-e
cular, the behavior of mode 2 near the LHR Xe 6 x 103) is not ade-

quately shown in these figures due to the fact that the plasma index of
refraction is rapidly changing with frequency near the LBR.

-26

-27-

-28-

>- -29 -

W -38I
_310

<-32Li- -341
-4 i3 ., .l~ , I i i

-1 i 0 1 2 3 4 5 6 7 
LOG X

Fig. 4 . The contribution to the total power spectral density
due to Cerenkov radiation from a spiraling charge
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Figure 5 shows the contribution to the spectral power density due

to normal Doppler emission at the harmonic p = -1. Note that in the

regime between the electron gyro-frequency and the LHR mode 2 shows

a lower radiation loss as compared with the Cerenkov contribution p = 0.

This is consistent with cold plasma calculations at these frequencies

which show that the Cerenkov term is the dominant one [48 . Also note

that for frequencies below the LHR two new modes appear. These modes,

which are due to thermal effects, show a relatively low power density.

Fiqure 6 shows very similar results for anomalous Doppler emission at

p= 1.

3i,, 

- id pM-°D~,0I~69 1=I _ -A = _
T-= 0.4

T, = 2000 K

I I

0 1 2 3
LOG Xe

2

4,

0.097

229 KHz
2000 K

I

4 5 6 7

Fig. 5 . Contribution to the total power spectral density
for a spiraling electron due to normal Doppler emission

at the harmonic p = -1
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Fig. 6 . Contribution to the total power spectral density
for a spiraling electron due to anomalous Doppler emission

at the harmonic p = 1

The directions of the phase velocities for the excited waves
corresponding to the power spectra shown in the previous figures are
shown in the next figures. The curves are obtained by first solving the
emission equation for n and then using this value for n in the dis-
persion equation to find n The phase velocity direction is then given
by ?~= tan1- (n /n ) The phase velocity direction, t2, is independent of
the radial velocity V of the spiraling charge, since the emission equation
does not depend on V. For Cerenkov radiation, Figure 7 , the wave
phase velocity component along the magnetic field is in the same direc-
tion as the particle velocity V . Such is not always the case for
magneto-bremmstrahlung, as noted, for example, by comparing Figures
8 and 9.
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Fig. 7 . Phase velocity directions of the various waves
excited by Cerenkov radiation
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Fig. S . Phase velocity directions of the various waves

excited by normal Doppler emission at the harmonic p = -1
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I 50
a.

3
LOG Xe

Fig. 9 . Phase velocity directions of the various waves excited by
anomalous Doppler emission at the harmonic p = 1

When discussing the propagation of radiation in an slowly varying
inhomogeneous magnetoplasma it is important to know in what direction
the waves which are excited propagate. Herein lies the usefulness of
these plots. However, in addition to specifying the directions in which
the excited waves propagate, we must also determine the direction of
energy propagation in order to trace the path of the radiation. Generally
the wave phase velocity direction and the group velocity or Poynting
vector are not colinear in a magnetoplasma. In Appendix B we gave the
method for finding the direction of energy flow. Applying this method we
obtain Figures O through 12 which show the direction of energy flow for
the various modes at the various frequencies corresponding to the param-
eters used previously. The angle 0 represents energy propagation par-
allel to the magnetic field. The negative sign before an angle indicates
that the radial component of the group velocity EgI) is antiparallel to the
radial component of the associated phase velocity. Note that the
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direction of energy flow is strongly affected by the frequency of the

emitted radiation. Note also that for the low frequencies mode 2 exhibits

a strong guiding effect which tends to keep the energy propagating along

the magnetic field. This is the familiar Whistler mode of propagation

[30 .

0 1 2 3
LOG Xs

4 5 6

Fig. 10 . The direction of energy propagation associated with the
various waves excited by Cerenkov radiation. Negative angles

indicate oppositely directed radial components of the phase
and group velocity vectors
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Fig. 11 . The direction of energy propagation associated with the
various waves excited by normal Doppler emission at the harmonic

p = -1. Negative angles indicate oppositely directed radial
components of the phase and group velocity vectors
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Fig. 12 . The direction of energy propagation associated with the

various waves excited by anomalous Doppler emission at the harmonic
p = 1. Negative angles indicate oppositely directed radial

components of the phase and group velocity vectors

The power spectra which we have shown thus far have been for a

single electron. We consider now what happens when we have a bunch

of electrons moving together. Many of the resulting phenomena can be

understood by analyzing the simple case of particles moving parallel to

the magnetic field and bunched in the form of a sphere of uniform charge

density Nb and radius g. The mathematical result of this bunching is

that our expression for the spectral power density (the integrand of

equation ( 5 .79 ) with p = 0) has now to be multiplied by the form factor

D (g) squared, where from (5.29), we have for g = h that

D(g) = Nb (2ir g/k)3/2 3/2 (gk). (6. 1 )
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The propagation vector k equals 2r/X where X is the wavelength in
the medium. Thus if there is only a small fraction of a wavelength in the
dimension 2g, then gk << 1 and the Bessel function can be replaced by
its small argument approximation. In this case

D2 [Nb (47ig/3)] (6.2)

= [total number particles in bunch]2 , kg < < 1,

which we quite expect. On the other hand if there are many wavelengths
in a dimension 27rg, then gk >> 1. Since J3/2 is a rapidly oscillating
function for large arguments consider only the envelope of maximas,
D . If we do this using the asymptotic form for J3/ 2 , we getenv

D2 = [ N (47rg 3 /3 )] / (k2 g 2 / 3)2
env b

= [total number particles in bunch] 2 /(k2 g2/3) 2 ,kg> > 1. (6.3)

Now if the particles in the bunch were radiating incoherently, then the
spectral power density would be increased by a factor equal to the total
number of radiating particles, in our case, Nb (47rg3 /3). Therefore, if
for some wave (k g/3)2 > Nb (47r g3 /3) = number of radiating particles,
then the power radiated into that mode is less than it would be if the
charges were not bunched but rather were radiating incoherently.

Figure 13 illustrates these conclusions. The curves marked a are
for a single electron while those marked b and c are for spherical charge
bunches of radii 10 cm and 1 meter respectively having a uniform charge
density of 105 particles per cubic meter. Note that for most frequencies
and modes the greater the number of radiating charges, the greater is
the radiation loss. However, at the very high frequencies e -- 0. 1),
and for the modes having spectral power densities 10-32, we see that
bunching sometimes causes less energy to be radiated than for a single
charge. These are the thermal modes having very short wavelengths.
The point to be made here is that there is a limit to the size of our
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bunch, beyond which the charges radiate even less at a given frequency

and into a given mode than they would if they radiated incoherently. In

a magnetoplasma this critical size is a function of the shape of the

bunch as well as of the magnitude and direction of the wave propagation

vector k.

-, S
io x,

Fig. 13. Comparison of the power spectral densities for a) a point
charge source, b) a spherical source of radius 10 cm and uniform

density Nb, and c) a spherical source of radius 1 m and
with a uniform number density Nb
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Results Using Model A
From our derivation of the dielectric tensor elements for Model A

using the kinetic theory approach, we find that this model is valid pro-
vided that the following inequalities are satisfied,

I Cp >> 1 and s <<1 , (6.4 )

where for a collisionless plasma

Up =(1 -p Y )/nz (2 ds) 6.5)

and s= n2 d /Y 2 (6.6 )

We shall only show numerical results for the Cerenkov radiation from a
particle. We shall also restrict ourselves to the high frequency end of
the power spectrum where ion motion can be neglected. Therefore, the
emission equation we use is given simply as

nz = 1 ( 6.7 )
2

In our computations the Model A is assumed to be valid for

I C 1 2 and 'e • 0.5. (6.8

Using the emission equation, this requires that

1 - p Y 223/2 -1 (d ( 6.9

For an unperturbed temperature T = T = 6000 hence isotropic unper-
ell e±L

turbed pressure to compare with the Model H results, and a particle
speed 13 = 0 . 16 9, we have that

I1 - pY I> 1.7xlO2 (6.10)

and, from j1e • 0.5, we also have that

n2 < x 105 y2 .
I e ( 6.11 )
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In terms of our abscissa variable X , these inequalities become

l + 0.63 pX2 l 1.7 x 10-2 (6.12)

and

n2 2 x 105 X (6.13)
± ~~e

for the operating line R2 = 0.4. Thus IC I 2 for all values of X except
p e

for values which lie very near to the harmonics of the electron gyro-

frequency, that is, Xe = 2.50, .625, .277, .156, .100, etc.

The power spectral density for a non-spiraling electron as calcu-

lated from this model is shown in Figure 14. The dashed portions of

the curves indicate where the adiabatic model fails, that is, at least

one of our inequalities was not met in those regimes. The most note-

worthy result is that there are two modes excited in the regime between

the UHR and the electron plasma frequency having nearly the same power

spectrum. In fact, on the scale of our graph it is difficult to distinguish

the two curves. However, their existence is readily apparent in the

plots of phase and group velocity directions. When we compare Figure

14 with Figure 3 for the hydrodynamic model, we see that only one such

high energy mode was predicted by Model H. (Note: 1) the various mode

numbers used in the two models bear no relation to each other and 2)

mode 4 of Model H is due to second order temperature effects, while

Model A retains only first order temperature effects. Thus we do not

expect any mode corresponding to number 4 of Model H for the Model A).

Also note from Figure 14 that there exists a frequency band between

Xe .62 and Xer .72 where no radiation occurs as predicted by Kikuchi

[ 38 ]. This is in contrast to the continuous spectrum shown in Figure

3 for Model H. Also different in the two models is the appearance of

a radiated wave in the regime below the electron plasma frequency and

above the electron gyro-frequency for Model A.
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Fig.14 . Power spectral density at high frequencies for Cerenkov
radiation from a non-spiraling electron obtained using

Model A. Dashed lines indicate regions
where model is not valid

Figure 15 shows the power spectrum for a spiraling charge. As with

Model H we see the effects of wave interference manifested in the

oscillations of the power spectrum. Similar differences to those noted

previously for the non-spiraling electron are found on comparing Figure

15 with the corresponding Figure 4 obtained with Model H. As also

noted for Model H, the rather jagged upper envelopes on the curves is

due to the rather limited number of abscissa points plotted.
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Figure 16 gives the spectrum of phase velocity directions excited

by the Cerenkov emissions. This spectrum is quite different than the

one obtained for Model H (see Figure 7). This is expected because of

the additional high energy mode and the emission gap at .62 < X < 72e
which we find in Model A.

10

z0
-120

0100

80
0
-J

60

Xor 40I

0 0.5 1.0 1.5 2.0 2.5

Fig. 16. High frequency spectrum of phase velocity directions
excited by Cerenkov emissions obtained using Model A.
Dashed lines indicate regions where model is not valid

Ae
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Figure 17 shows that the new mode 2 propagates with a group velo-

city which has a radial component antiparallel to the radial component

of the associated phase velocity vector. This is indicated by the

negative angles in Figure 17.
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Fig. 17. High frequency spectrum of group velocity directions
excited by Cerenkov emissions obtained using Model A.
Dashed lines indicate regions where model is not valid



CHAPTER VII

POTENTIAL APPLICATIONS OF THEORY

In the previous chapters we developed a theory for computing the

radiation losses from free electric charges and antennas moving through
a warm magnetoplasma. Here we discuss some areas where this theory

is applicable. We first discuss its possible application to explain noise
generation in the ionosphere, and secondly we discuss its potential
application to the problem of radiation from satellite-borne antennas in
the ionosphere.

Noise Generation in the Ionosphere
The main contribution to the natural atmospheric noise observed

at low frequencies using ground-based receivers is caused by lightning.
When a lightning flash occurs, the electromagnetic noise which it
generates can propagate to a distant receiver by different paths. Figure
18 depicts the"direct"path from the lightning flash, L. to the receiver,
R, and Figure 19 shows the so-called Whistler path in which the

IONOSPHERE
IONOSPHERE

L~~~

FIELD LINE

Fig.18 "Direct'path from L to R Fig. 19 . Whistler path from L to R
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noise from L penetrates the ionosphere near the source and then travels

along the Earth' s magnetic field to a receiver located near the opposite

end of the same field line. Along that portion of the Whistler path which

is in the ionosphere, the higher frequency components of the noise

travel faster than the lower frequency components. If a high gain audio

amplifier is connected to the receiving antenna R, a descending tone can

be heard--hence the name Whistler. While studying Whistlers, inves-

tigators noted that there also existed a continuous component of atmos-

pheric noise at frequencies below 10 MHz that appeared to be of cosmic

origin [ 60 ]. Ellis [ 19 ] discussed the possibility that the portion of

this noise at frequencies of hundreds of kilohertz was due to Cerenkov

radio emission by auroral particles approaching the Earth. He concluded

that the flux density of this radiation might be as high as 10-21 Wm2

Hz-. Such power flux densities are well above the minimum observable.

Subsequent analysis of natural atmospheric noise showed that much of

the discrete VLF (30 kHz to 3 kHz) noise observed also had its origins

in the exosphere rather than in lightning bursts [25 ]. However, com-

parisons between theory and observations were largely speculative at

that time since no direct measurements of suspected source currents in

the exosphere were available.

Experiments performed aboard the Earth orbiting Injun 3 satellite

indicate that VLF hiss emissions are often correlated with precipitated

high energy electrons [28 ]. In one of the cases cited in [ 28 ] (March

3 event), the energy balance is as follows: VLF energy flux less than

10 kHz = 8.0 x 107 erg cif 2 secF', electron energy flux equals 10 ergs

cm2 secFi. In addition, observations seem to indicate that VLF hiss is

generated near the high-latitude (or large Li) boundary termination of

particle trapping by the Earth' s magnetic field.

1 If the Earth' s magnetic field is approximated by a dipole field, the L
value is equal to the distance from the center of the Earth measured in
Earth radii, at which a particular magnetic field line crosses the mag-
netic equator. Further discussion of this quantity can be found in
McIlwain [ 51 ].
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Liemohn [ 47 ] applied the results of the theory of Cerenkov and
cyclotron radiation in a dispersive medium to the interpretations of the
very-low-frequency (VLF) and low-frequency (LF) emissions from the
magnetosphere (3 to 300 kHz) using the following assumptions:

1) The source of the noise was postulated to be suprathermic
electrons streaming through the ambient plasma and radiating incoher-
ently.

2) The energy radiated by each electron into the Whistler mode is
assumed to propagate along the Earth's magnetic field lines.

3) The Earth's magnetic field is approximated by a dipole field.
4) The total spectral power density observed near the base of the

ionosphere is taken as

P(f) NQ VB

where P(f) is the average power loss per electron at the frequency f as
calculated using cold plasma theory, NQ is the number density of supra-
thermic electrons and V B is the volume of the flux tube containing the
source electrons. Liemohn took P(f) 10-30 WHz_ 1 , N Q 0 . 1 electrons/

cm3 and VB 1010 cm3 (corresponding to L = 3). With these rough approx-
imations, the incoherent radiation flux at the base of the flux tube (cal-
culated to be 1021 W/cm2 Hz) was found to be several orders of mag-
nitude below the observed power level (taken as 1 14 W/cm2 Hz).
Several years later, Jorgensen [ 34 ] performed very similar calculations.
The reason for doing the recalculation was based on the following three
reasons:

1) The observed power with which the calculated power was com-
pared was claimed to be 10-10 Wm72 Hz-1 , whereas preliminary results
obtained by the VLF experiment in the OGO 2 satellite, which are reported
in 34], indicate a maximum spectral density of about 10-12 Wm 2 Hz--.
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2) Although the noise was observed at latitudes where the magnetic

shell parameter L is about 7 and higher [ 28 ], the tube of lines of force,

the volume of which was used in the total power calculation, was

located by Liemohn at L = 3, and so the volume used was much too

small.

3) The density of the energetic particles was taken to be 0.1 cm3,

but densities of electrons with energies between 1 and 10 kev observed

in the auroral zone have been found to be almost 2 orders of magnitude

higher.

In view of the factors discussed above, the models used in earlier works

considering Cerenkov radiation as a mechanism for VLF and LF emissions

probably were unrealistic, and so the new attempt was considered worth-

while. In summary, Jorgensen points out that typical noise spectra in

the VLF and LF ranges observed from the ground (Byrd Station) and in

space (OGO 2) exhibit similar characteristics with a peak spectral den-

sity near 10 kHz. Maximum spectral densities observed on the ground

and in space are about 10-14 and 10712 Wm-2 Hz-1, respectively, but

usually the peak spectral densities observed are one or two orders of

magnitude lower.

Jorgensen does not consider the difference of about 2 orders of

magnitude between the maximum observed spectral density (1 -12 Wm 2

Hz-1 ) and the maximum calculated spectral density (10-14 Wm2 Hz-1) as

a serious problem because the calculated noise spectrum is based only

on radiation from energies above 1 kev. The contribution to the radia-

tion from electrons with energies below 1 kev were not included in his

calculations because at the time Jorgensen' s calculations were performed,

knowledge of auroral electrons with energies below 1 kev was poor.

Jorgensen concludes that the emission known as auroral hiss and polar

lower hybrid resonance noise may be generated by an incoherent Cerenkov

process in contrast to the earlier work by Liemohn [ 47 ] and others.
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Lim and Laaspere [ 48 ] extended the theoretical computations of

Cerenkov noise emission to include the low energy particles neglected
by Jorgensen. In addition to including the very soft electrons in their
calculations, they also made their calculations for a magnetic latitude
of 780 as opposed to the 700 latitude used by Jorgensen. While

Jorgensen's value is appropriate for auroral hiss observed near midnight,
they point out that satellite results have shown that these emissions are
most intense at about noon magnetic local time' in the region of the day-
time "polar cusp" at about 780 invariant latitude2.

In the course of their study, they became aware of a weakness in

the cold plasma theories which is generally called the "infinity catas-
trophy", and is caused by the fact that as the electron energy E
decreases, the intensity of Cerenkov radiation from it increases as E-.
They note that the E-4 dependence of the radiated power cannot continue
without limit as E decreases, since net radiation from an electron
should certainly cease as the electron' s energy becomes comparable to
the thermal energy of the background electrons.

There is experimental evidence that similar phenomena occur at
frequencies just below the upper hybrid resonance frequency, around a

few megahertz [ 27 ], [ 29 ]. In this regime of the CMA diagram, the

cold plasma refractive index surfaces are unbounded in certain resonance
directions resulting in infinities in computed power spectra similar to the
previously discussed case of the lower frequencies.

The source of the "infinity catastrophe" lies in the shape of the
cold plasma refractive index surfaces in regimes of the CMA diagram

where resonance cones exist (see e.g. Figures 30 and 32). Note that
in the resonance regimes there is no lower limit on the electron parallel
velocity which satisfied the Cerenkov radiation condition V = c/nz:. ~~~~~~ z
I Magnetic Local Time (MLT) is defined as the local time at the inter-
section with the magnetic equator of the field line passing through the
satellite.
2 The invariant latitude of a satellite is the magnetic latitude at which
the magnetic field line passing through the satellite intersects the
Earth's surface.
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no matter how small Vz is, one can always find a real n such that the

emission equation is satisfied. As Vz - 0, n -Kcain these regimes. We

shall examine this problem in the light of the theory developed in this

thesis.
We can classify the methods for eliminating the "infinity catas-

trophy" into two categories. In the first category are those methods

which seek to prevent n - c by, making the mathematical model of the

plasma more realistic. These methods likely include the allowance for

collision and/or thermal effects in the description of the plasma. The

second category contains those methods which allow n - c but limit the

amount of power which can radiate into directions where n is very large.

This is the technique most often employed. Generally, in this approach

one simply neglects the radiation into directions where n is greater than

some cutoff value. Another possibility, using this kind of approach, is

to allow for sources of finite size. When the sources can be modeled in

this way, the "infinity catastrophe" is eliminated in a more consistent

and realistic manner than is possible by simply imposing a cutoff on n.

Consider these methods in more detail. First consider the case

when thermal effects are included in the description of the plasma as in

our Models A and H but collision effects are neglected. The refractive

index for such cases is not always finite. That this is so, can e seen

by examining the refractive index surfaces for Models A and H as given

in Appendix G. For example, when Xe = .8 Model A has resonance cones

(n -) as shown in Figure 52. Note, however, that at the same value of

XI Model H has bounded refractive surfaces. The surfaces for Model H

are not bounded for all values of Xe, however, as seen for example in

Figure 42. Therefore when collisions are neglected, the inclusion of

plasma thermal effects in the manner of Models A or H will not lead to

the elimination of the "infinity catastrophe" for a point charge source.

When collision effects are introduced into Models A and H, the

refractive index is likely to remain finite everywhere as it does for the

case of a cold plasma with collisions [ 15 1. However, in the magneto-
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spheric plasma surrounding the Earth, collision frequencies are often

very low. The introduction of such small collision losses into Models
A and H may still lead to unrealistically high values of the refractive
index. In these cases one should use improved models for the plasma,
such as our Model K, or else allow for sources of sufficient size such
that the power which is radiated in the form of waves corresponding to
very large refractive indexes is negligible.

For example, consider radiation from an extended charge source.
In Chapter V we give the power radiated by a uniformly charged ellipsoid
of revolution which is moving along the magnetic field of an anisotropic
plasma. Such a source might approximate a collection of point charges
in a beam which have been bunched by plasma waves.

For very large refractive indexes, the Fourier transformed current
density for this source behaves like 1/n2 or like V2 if one uses the

z z
Cerenkov condition nz = c/Vz . Since the power radiated goes like the
square of the current density, we find that for an extended source the
power decreases like V3 instead of increasing like l/V which is thez z

case for a point charge. Hence, such an extended source has a finite
power spectral density irrespective of any infinities which exist in the
refractive index.

While studying the problem of radiation from spiraling charges we
noted that Model A predicted that a relatively large portion of energy

could be radiated into the thermal mode at frequencies near the upper

hybrid resonance. Since there appears to be an enhanced band of noise
in the ionosphere at these frequencies, it would appear from our numer-
ical results using Model A that part of this noise (sometimes referred to
as "region 3 noise" [ 42 ]) may have its source in Cerenkov and
cyclotron radiation from suprathermic electrons radiating into electro-
acoustic (thermal) modes.
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To check such a hypothesis would require that the source of the

"noise" be located and described. When studying VLF hiss, most

investigators assume that the source electrons are located approxi-

mately on the same field line as the receiver, since VLF Whistler mode

radiation often propagates nearly along the magnetic field lines. At
frequencies near the UHR, the calculation of the trajectory of radiation

propagation is quite complicated, especially if thermal effects are taken

into account [ 4 ] (which could be important) . Because of the difficul-

ties involved in tracing a ray backwards from the receiver to the source

electrons at these UHR frequencies, our knowledge of the location of the

source of this noise is very poor. Thus an adequate check of the results

predicted by Model A regarding region 3 noise must await the develop-

ment of a theory for locating where the sources are; a search of experi-

mental data concerning the description of the sources is then in order.

Once the sources are described the theory given here may be applied.

The radiation from free charges also has potential as an element of

a communications system (so-called free-charge antennas). The feasi-

bility of using free-charge-radiators in a controlled manner has recently

been examined using cold plasma theory [ 16 ]. The warm plasma theory

developed in this thesis can be applied to this problem.

Antennas in the Ionosphere

The theory given in this thesis can likewise be applied to commun-

ication systems which involve a source antenna in the plasma. In parti-

cular, our treatment of this problem differs from most previous studies

[53 ], [ 70 ] in that we have treated antenna motion and plasma thermal

effects simultaneously.
The study of the radiation losses from a transmitting antenna are

important for an understanding of antenna efficiency. Thermal mode

excitation could be a major limitation to the maximum realizable

efficiency of an antenna in the ionosphere. Using the formulas developed

in this thesis, loop and dipole antennas can be compared with one

another with regard to their susceptibility for exciting thermal modes.
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Although we have derived expressions for the total power radiated

by various antennas, it is sometimes more useful to obtain radiation
patterns for these antennas. If the antenna is located high up in the
ionosphere so that the energy propagation can be described by "ray

theory", then it is often most convenient to obtain these radiation
patterns in terms of wave normal space (-space) . Only slight modi-

fication of several formulas given in this thesis are necessary to
obtain expressions for k-space radiation patterns for the loop and
dipole antennas.

In our expressions (5.95) and (5.88) for the power radiated by

moving loop and electric dipole antennas, we note from the emission

equation that a band of frequencies are emitted. The width of this band

depends on the magnitude of nz. Those modes which have nz very large,

such as the thermal modes, will show large frequency spreading. The

formulas given in this thesis allow for the systematic study of the com-
plex phenomenon of Doppler shifted radiation from sources moving in

warm anisotropic plasmas.



CHAPTER VIII

CONCLUSIONS

Before presenting our conclusions we first review both the moti-

vation behind this study, and its objectives. The motives for this study
are found in both experimental observations and in paradoxical theoretical

predictions. The experimental observations we refer to are the discovery
of rather intense radio noise' in the ionosphere at frequencies below the
upper hybrid resonance frequency and above the electron plasma frequency
[84, 31, 27, 1]. This noise has been correlated with fluxes of supra-

thermic electrons also observed in the vicinity of the intense radio noise
[ 42 ]. It was suggested that these energetic electrons may be the source
of this radio noise via the Cerenkov and cyclotron radiation which they
emit. However, theoretical estimates of the amount of Cerenkov and

cyclotron radiation emitted by an electron in this frequency band, based
upon cold plasma theory, lead to the paradoxical result that the energy
radiated becomes infinite as the particle speed approaches zero
("infinity-catastrophe") [ 63 , [ 48 ]. The original objectives of this

study were: 1) to modify the cold plasma theory so as to eliminate the
"infinity catastrophe" and, 2) to apply the improved theory to test the
hypothesis that the observed "region 3" radio noise is due to Cerenkov
and cyclotron radiation.

In order to eliminate infinities in computed power spectra, it was
decided to discard the cold plasma model in favor of a more realistic

plasma model which would allow for thermal effects. In addition, the

new model was to include collision effects. As a further means of
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1 This is sometimes referred to as "region 3 noise" because it relates
to region 3 of the CMA diagram.
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eliminating power infinities and at the same time treat the case of

coherent radiation from charge bunches, it was decided that the problem

of Cerenkov radiation from an extended source would also be investi-

gated. Since there are several ways in which plasma thermal effects

can be modeled, an additional objective developed; to compare Cerenkov

and cyclotron radiation spectra as computed using the various models.

Due to the unforseen complexity and magnitude of the work

required to modify cold plasma theory as indicated in objective 1), very

little effort was given to applications of our theory as related to the

previously stated objective 2). However, we believe that the theory of

Cerenkov radiation and magneto-bremstrahlung developed in this thesis

is the best theory currently available for analyzing "region 3 noise" in

terms of these processes.

Modifications of cold plasma theory to allow for finite plasma

temperatures are generally made using either hydrodynamic or kinetic

theory. The hydrodynamic theory is based upon equations derived by

taking successive velocity moments of the Boltzmann equation. In order

to close the set of moment equations the assumption of negligible heat

flow is made (adiabatic approximation). The kinetic theory is based upon

computation with the Boltzmann equation directly instead of working with

its moments. As is usually the case for both the hydrodynamic and

kinetic theories, the governing equations were linearized in this

thesis.
We found that by transforming the governing equations to Polarized-

Wave space and working in this space, we were often able to express

rather complicated results very concisely.

The conductivity tensor and the closely related dielectric tensor are

of the utmost importance in our theory, since they determine how the

plasma is modeled. Consequently, we have given very detailed deriva-

tions of the dielectric tensor for the various models, and we have indi-

cated where errors exist in previous published derivations. Note that
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although the dielectric tensor for Model A is derivable using either a

macroscopic or kinetic theory, the latter theory also gives the regions

of validity of this model very straightforwardly.

The tractability of analytic solutions to many problems involving

radiation in plasmas, depends largely upon the complexity of the dielec-

tric tensor. Note in particular, that the dielectric tensor for our Models

A and H allow us to perform the integrations required to obtain the power

spectral density from a radiating charge without resorting to difficult

integrations involving branch points and branch cuts. Such is generally

not the case when working with the full kinetic expression for the dielec-

tric tensor. However, we wish to point out a potentially promising

extension of our results which might allow for some of the features of the

kinetic theory such as Landau and cyclotron damping.

Kikuchi [ 37 1 in a very interesting paper gives various explicit

formulas for the dielectric tensor which include the effects of Landau

and cyclotron damping. These formulas are obtained starting with the

dielectric tensor of kinetic theory. Kikuchi then takes various expansions

of the transcendental functions appearing in this tensor. Substituting for

these functions the proper expansions, and neglecting high order temper-

ature effects, he is able to obtain fairly tractable formulas for the dielec-

tric tensor. It appears possible that using Kikuchi' s formulas, the power

spectral density of radiation from a charge spiraling in a homogeneous

magnetoplasma can be obtained analytically in a relatively straight-

forward manner. This would include the phenomena of Landau and cyclo-

tron damping, which we have not been able to treat in this thesis.

In the opposite case, where thermal effects are completely negli-

gible (cold plasma theory), we have shown that our simplified formula

for the power spectral density for a spiraling point charge is identical

to that obtained by Trulsen and Fejer (TF) [ 80 ] using a different

approach. Since (TF) and Liemohn [ 47 ] are in disagreement as to this

formula, our results support the conclusion that the formula of TF is

correct and that of Liemohn is incorrect.
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By including finite size charge sources we have been able to
eliminate the "infinity catastrophe" independent of whether a cold or
warm plasma model is assumed.

In addition to Cerenkov and cyclotron radiation via the cold plasma
modes, our numerical results clearly show that there are also emissions
into the new thermal modes described by warm plasma theory. It is also
obvious from our results that the radiating bands for the cold plasma
modes and the thermal modes are not identical. Indeed, there are even
differences in the radiation bands for the thermal modes depending on the
particular warm plasma model used (i.e. Model A or H).

Most cases which we have studied predict significantly greater
radiation losses into the cold plasma vs. the warm plasma modes. A
noteworthy exception occurs in "region 3" of the CMA diagram when Model
A is used. Recall that this is the regime where excessive radio noise was
observed in the ionosphere. In this regime radiation losses into the
thermal modes may be a very significant part of the total energy radiated.
Because the cold and warm plasma modes have very different propagation
characteristics in this regime, the thermal mode contribution to "region 3
noise" observed by a receiver in the ionosphere and the corresponding
contribution to this noise due to the cold plasma modes will likely have
different source locations. Hence, thermal effects may be very important
in understanding the mechanism of "region 3 noise".

During our study of Cerenkov and cyclotron radiation we did not
find any significant changes in computed power spectral densities for
spiraling charges when we replaced the scalar pressure with an anisotropic
pressure in Model A. The anisotropic pressure model, however, was not
extensively tested so that no general conclusions were obtained.

With regard to the "infinity catastrophe" we wish to point out that
in both Models A and H there exist certain modes having resonance
directions such that the refractive index n -a in these directions. We
find that the cold plasma index infinities at the LHR and UHR are elimin-
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ated by allowing for plasma thermal effects; however, the thermal modes

themselves have resonance cones which may lead to an "infinity catas-

trophe " .

Refractive index plots for Model A seem to indicate that this model

is strictly valid only in the vicinity of the upper and lower hybrid reson-

ances. Away from these frequencies the refractive index is so large that

the basic approximations used to derive the model are no longer valid.

We find that the results of computations based on Models A and H

can often differ drastically from one another. In particular, large differ-

ences were noted at frequencies near the upper hybrid resonance.
The method of analyzing radiation from spiraling charges was found

to be easily adapted to the study of radiation from moving antennas.

However, in the expression for the power radiated by a moving point

dipole antenna a singularity was noted for those cases where n=l/Z.
It was noted that by a slight alteration of our derivation of the

power loss formulas radiation patterns in wave normal space could be

obtained. These are particularly useful as inputs to ray tracing theories.

The Doppler spread of frequencies caused by antenna motion can

be analyzed straightforwardly using the formulas given in the thesis.



APPENDIX A

POLARIZED-WAVE (P-W) SPACE

In solving problems involving anisotropic plasma media, it is

often the case that the equations which must be manipulated are greatly
simplified when expressed in terms of "polarized-wave" space. This

appendix is devoted to a discussion of "polarized-wave" space insofar
as is required for understanding its use in this thesis.

The underlying reason that the equations simplify when written in
P-W space is that the curl operator (ezx) which appears so often in
problems involving anisotropic plasmas becomes a diagonal tensor in

P-W space as shown in the next section. The transformations relating
quantities in Cartesian space to corresponding quantities in "polarized-
wave" space are given in this appendix along with the explanation of why

it is referred to as "polarized-wave" space.

ADiagonalizing the Matrix for (e z x)

Consider the vector product e x e. This product may be written

0 -1 ° e

Zxe I 1 0 ey (A.1
0 0 0 eZz

We seek eigenvectors and eigenvalues (X) such that

[0 -1 0 e [ e

I J[eEI= X [eg] A.2)

0 0 0- e e
z z

This system of equations has a non-trivial solution only if
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A (X2+ 1) = 0 . ( A.3

Thus there are three possible eigenvalues, namely, = +i, -i, or 0.

The corresponding eigenvectors e+ , e 1 e have directions speci-

fied by

A
2+1 C (ex i ey

e X (eX + i)

A
-o A.4

where we shall fix the proportionality constants by requiring these vectors

to be of unit norm.

If e is a complex vector

e = e' + i e" (A.5

with e' and e" real, then we define the norm of e, |l e | , as

1e 1- + (* . - + (e' 2 + e"2)2 , (A.6

which is a positive real number. The length of e, e , is defined as

e~~ (e2 )S - (S12 e + i 2el e ) ( A.7)

which is a complex number, sign undetermined.
AA A

The eigenvectors of unit norm, e+, I ,11 eo have cartesian

components A is
e+1 2 e~x y

A f A e- =2 (eX ey)te-l2 (x y 

A Ae =e .
0 z

(A.8 )
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They are linearly independent and can therefore serve as a set of basis

vectors. In terms of this set of basis vectors, the cartesian unit vectors
are given by

A A A
e = 2 2 (e + e)

A - A A
e =i 2 (ei -e~

y +1

A Ae =e
z 0

Transformations Between Cartesian and "Polarized-Wave" Spaces

A vector, E, will have components

A A A
E = E e+ + E1 el + E e 

= E e + E e + E ex x y y z z

1 E 1 -iEy) + E e=22 (Ex + i E ) + 2 E A-iy ~ Ze (A.10 )

which leads to the vector transformation matrix, T .

El 1

E1 = 2- 0 1 (A.ll )

T'3 is given by

rElE [ l1i

E I

ix i'
IEI 2~ ~~~I -

El y l -T -
[E I[

1 0 E1 El

i E = - E1

0 f Eo E
i o jo

(A.12 )

Suppose E (r,t) = (k,w) e represents the electric field

associated with a plane wave of real amplitude c propagating along the

z-axis. From our transformation matrix

( A.9 )

i 0 Ex x
-i 0 E = T. E

Y y

I
0 2ff E EJ A L zi
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1
di1= 2 i (x +i6y y(-iY) SO =Z (A.13

Therefore, 1 f 0 ,-1 =do = 0 refers to a left circularly polarized (LCP)

transverse electromagnetic (TEM) wave. Similarly, -1 ° 0, c1 = 0

and (5 73 0, 6 = _1 = 0 refer to waves which are right circularly polar-

ized (RCP) TEM and longitudinally polarized respectively. By definition,

the electric field of a RCP wave rotates in a clockwise manner when

viewed looking in the direction of the magnetic field, conversely the LCP

wave rotates counterclockwise. For this reason the coordinate system

having (e+,, $ ) as basis vectors is sometimes referred to as the

"polarized-wave" (P-V) coordinate system.

If C is a tensor in Cartesian space and K is its transform in P-W

space, then

K=TC T3- and C=T'-1K (A.14

Tensors written in P-W space are arranged as follows. Rows are

labeled in the same manner as column vectors. Hence the top row is

the +1 row, the middle row is the -1 row and the last row is the 0 row.

Columns are labeled in such a manner that the product of a tensor K Mid

a column vector E obeys the relation

K * E = K E . (A.15
- pL-v V

According to this scheme the columns are ordered -1, +1, 0 when read

from left to right.
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If

K-K1 K 11 K1o 1Cxx Cxy Cxz

=K = K1 K-1 K-ao and C CJ [C~~~~~Y yy yz 

KO-1 KOL Ko o zzC zx C y C

(A.16)
then the components of K and C are related as follows:

Ki- = 21 (Cxx + Cyy + i 21 (Cyx - Cxy

K1 1 = 2-1 (C x - Cy + i 2-1 (Cyx + C y)

Kl11= 21 (Cxx - Cyy) i 21 (Cyx + C )

K.11 = 21 (Cxx + Cyy i 2-1 (Cyx -C )

Ko = 22 (Cxz + i Cyz

K 10 = 2- 2 (C - i C )
I

Ko- = 22 (Czx i Czy

Ko = -2 (Czx + i C y

Koo = Czz ( A.17)

or inversely,

Cxx = 2 (K,_1 + K 1 + K-1 - + K-1 )

Cyy = 2 (K1-1 1 -K, K-- + K 1 )

Czz = Ko 0

C = i 2-1 (K,1I - Kil + K- 11 - K-1)xy

C yx = - i 2-1 (K 1, + Kil -K- 1 -1 - K1 1)
1

Cxz = 2-2 (K1o + Ko)
1

C = 2 (Ko_ + K)
zx

C yz = i 2- (-K o + K-jo)

C = i 2- (Ko-1 -K01 ) . ( A.13)zy
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Note from the previous relations that C corresponds to R where the

transpose of R is defined by

(R )T R (A. 19

or more explicitly,

C C R P 11 R11 M
Txx yx zxTR R ,2[a 1

= C C C R = R 1-1 RI-, R (A.20)
xy yy zy-

CXz Cyz CzzR-o Rio Roo

With this definition of the transpose, RT is not equivalent to the matrix

R with rows and columns interchanged.

Sometimes a vector k is most conveniently expressed in either

cylindrical (kL, k, () or spherical (k, , A) coordinates, hence we

also use the transform from Cartesian to P-W space to write

k = 2 k 2-2 k sin e 

k0 = k =kcos . A.21)

Vector and Tensor Algebra in P-W Space

The dot product of two vectors V and B is given by

V B= V B

As usual, the summation convention is used with Greek indices ranging

over the values +1, -1, 0. Similarly for dot products between vectors

and tensors of arbitrary rank we define the dot product in P-W space as

B BR = a ...
- y Yu... ( A. 22)
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Another form of the dot product frequently encountered is k * RV

which in P-W space is the tensor

k V R
a -y yv (A.23 )

Using the transformation T, the cross product B x V becomes

T- L (xV) =i

3 (xV*)=i

B
0

0

L B_I

Bo

O

L-B-1

O -B, VI

-Bo B1 V11

B1 ° Vo

B -B [ V-1

-Bo B_1 V

B, 0 Vo

Note that if B=B ez = B e
0 z 0 

LT (ezx )] =ivV I (v=+l, -1, or 0).

When transforming vectors involving cross products, it is often conven-

ient to express the cross product as a tensor. For example, in Cartesian

coordinates (z x) is equivalent to

0

[1

0

-1 0

0 0

0 4
( A.27)

also

(A.24 )

( A.25 )

( A.26)
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Hence, in P-W space this tensor transforms to

T ( x) T-1= i 0

L 0

0 0-

-1 0

0 O0

(A.28)

The identity tensor I keeps the same form in P-W space which

it had in Cartesian space as do the related tensors I and I defined by
= 11

0 0 0

I = 0 0 0
11

L 0 1j
(A.29)

When expressed in terms of Groek subscripts the tensor elements for

I, I , and I become
= =1 = 11

I V = - V 
I V= 6 , I =(1 _F 2 )61 V F-U nlw pF-V (A.30)

Here 6 v has the usual meaning of the Kronecker delta, namely,

6 =. -V
II V ( O, F -V

(A.31)

The quantity 6V is not to be taken in the sense of a component of a

tensor even though we write it with subscripts similar to tensors.

Vector Analysis in P-W Space

The gradient, divergence and curl operations can also be trans-
formed into the P-W space representation. In terms of cylindrical

(p, z, ) coordinates the gradient operator becomes

(TV)Y p -+(1y 2) -] e . (A.32)br ~ P 

1 0 0

it - 0 1 0

L 0 0 0i
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The divergence is written

V A = A * (A.33)

The curl is somewhat more complicated, taking the form

[T (Vx A ) (r DoAy -(r ) A. 

+i (l-V 2){( ab )+lA-2. (br )-A+,} A.34)



APPENDIX B

BASIC MAGNETO-IONIC THEORY

This appendix is intended as a brief description of those elements

of basic magneto-ionic theory which are of use in making the remainder

of the thesis more understandable. Also, since the notation used in

this thesis may differ somewhat from that with which the reader is

familiar, it seems reasonable to include this discussion of the simpler

plasma concepts to supplement the more complex analyses. In this

appendix collision effects are neglected.

Dispersion Relation

At the end of the second chapter we wrote down an expression for

the dispersion relation, namely,

det (n2 I -K - nn )=0. (B.1
0'-> U-y a' -7

which gives the functional dependence between frequency and wave

propagation or refractive index vector. In this section we write the

dispersion relation in a form which is more suitable for analysis. By

writing the refractive index vector n in spherical (n, z,( ) coordinates

and letting S - sin ?, C cos , we can express the dispersion relation

as

1 n2(1+C2) -Ki2 e2n2SCeiKo
A~w)E4n2 2 e -K 1 -n 2 1eC 2 )-K 1, -22In SCe(P-K.-,

19(( )--~ 2 2 S2 eCi253- Kl 1n (+C2 ) _Kl - 2 S Ce-VK1

-2-2 n2 SCe -o-,1 - 2nSJe? n2 K n2S2 K'

=0 (B.2

where the parallel lines about the matrix indicate the determinant of the

119
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matrix is to be taken. The angle tAis measured from the z-axis to k or
n and the angle pis measured from the x-axis to the projection of k or
n on the (x-y) plane. The dispersion relation can now be written in the
form of a polynomial in n2 ,

a n 4+ n2 + = 0 ( B.3

where

a - 2 sin2 [K I- + K-1 + e 2p K-,- + ei2p K1 1- COS2 ?Koo

- 2 i sin ?u cos ?a [e i(P(Ko + Ko ) + e (K-1 + Kl ) ] B.4 

/5= sin 2
t# [K.-1 K- 1 - K K-1 + K K- + K-10 K -Ko K-,,

vKoo K- + e i2p (Koo K - K K)

+ % ei2S (Koo K-1-1 - Ko Ko)-1)] +

2 * sin cos [e' ' (K,0 K-11 + K K - K 0 K - K K-)

+ e (P (K-, K + K 0 K - K-.- K - K K ) ]

- K K - Ko Kol +Kmo K-1 +K K ( B.5)

C = K K K, + K-,-, Ko K - KoKo Kl

+ K K-1 K - K-, K0 K0 - K, K-1 Koo ( B.6

Similarly, in cylindrical (n, p, n z) coordinates

- 2 2 2 ~~~~i2 p 1-ffn +n _Kl-I -n e 3K -2- 2n n ei(°-Klo

-L z L~~~ z
ltA = -2 n e- 2$-K-1-1 i2n +n2 -K-,, -2- 2 n n e (-K-1o

1 * ~~~~21 
-2 nln e ,-K -22 nlnze3 p-K, n. -Koo

= 0 , ( B.7 )

and we obtain a polynomial in n,
-
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i n + a I n3 + 13 n2 + 'n +C'= 0 ( B.8 )

where

ai = -* (K1. + K.,)- * (e Kl + e K-,-,) ( B.9 )

a = -n Z2` [E(K1,Y01) e P¢(Ko1+ Ko) e i4 (B.10 )

1 = n2 [-K~o - (K,-,+K-.,) + (-e i 2pKil - e 2(K-,.-,)] +
z

W[K-11 Koo +K1_1 Koo -K-_o Km K1K10+ 2 K-11 K-1- 2K-1-1 K11+

(Kl -1 - Koo -K -lo Ko-1) e(p+ (Kll Koo Kol K) e (i] B.ll 

13' =-n 3 2(K10o+Kcj )e +(Ko,+Ko) e(P]+
z

n 2 [ (Ka K,- - Ko-, Kl - K.- 0 K,, + K-,1 Ko) e ip +
z

(K-lo K,.-+ - K..- 1 Ko3. + K-,, Ko. - K-.-1 Ko) e ] (B.12

C' =-n Koo + n2 [K-.1 Koo + K, Koo - Klo Ka - Ko- K]o +
z

[K,1 Ko-, K, o K-,, Koo K,-, + K-lo KOL K,-, + Kl K-.-Y KYo

- Kl- K.-, K _1- K-,-1 Ka K, 0 ] (B.l3 )
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Cold Plasma Dielectric Tensor

Assuming that v * P 0 - and neglecting collision effects, the
momentum equation ( 2.52) becomes

a v /t = q ryi-1(E+ V x B) B. 14)

or, if we are working with the Fourier-analyzed equation (2.55)

-iW V V= q mS iV SV ( IrB.15)5 V bs sy

The mobility tensor 1E follows straightforwardly by solving the force

equation for S in terms of . This results in the following diagonal
mobility tensor

[(l-YS)-l O 01

ES= iqS (mS O ()+YS o ( B.16 )
O 0 1-

where

YS qs B/m c W= 'bs/W. ( B.17 )

From our relation between the dielectric tensor K and the mobility
tensor S.,i.e. eqn. (2.62), we find that

- ,X (1-YS ~ 0 O

K = O 1- X(l+YY-' o (B.18

where

X =N q2 / m C)2s so s 0 s ( B.l19 )
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It should be noted that the reason K has the simple diagonal form

shown is because we have chosen to express our equations in terms of

Polarized-Wave space. We find that many of the equations relating to

phenomena in anisotropic plasma are greatly simplified when expressed

in terms of P-W space. We have expressed the dielectric tensor using

the normalized gyro, Ys, and normalized plasma, Xs, frequencies. In

order to avoid confusion when comparing our equations to those given

elsewhere, one should note that our definition of Y5 includes the sign

of the charge of q . The dielectric tensor given here is usually referred

to as the cold plasma dielectric tensor.
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Cold Plasma Dispersion Relation
Having obtained the explicit expression for the cold plasma

dielectric tensor in the previous section we can substitute this into
( B. 3 ) - ( B.6 ). The result is

a n4+ 8 n+C= 0 ( B.20 )

with the coefficients a, 3, and C simplifying to

a = -K sin2 -K CoS2 ( B.21 )I 0 -

= (K1 K-1 - K Ksin 2 +2 K K (B.22 )o I 0 ±J
O = -K K-1 K , (B.23 )

where

V s s s

and

K= 2(Kj+ K-1) . (B.25)

This is usually referred to as the cold-plasma dispersion relation.
Now cutoffs are defined by n = 0 while resonances are defined by

n2 = co .The principal cutoffs and resonances correspond to z5= 0 and
t5= r/2. Setting t~= 0 and 7r/2 and solving the resulting forms of the
dispersion relation yields the following table of cutoffs and resonances.

TABLE 2

PRINCIPAL CUTOFFS AND RESONANCES FOR A COLD PLASMA

CUTOFFS RESONANCES

K, = 0, K-1 = 0, Ko = 0 K, = , K-1 =co

K, = 0, K1 = 0, Ko =0 K = 0
±
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CMA Diagram

The CMA diagram is a convenient tool for presenting much of the

information contained within the cold plasma dispersion relation of the

previous section. The letters CMA refer to Clemmow, Mullaly and Allis

who introduced the method of analyzing the dispersion relation which we

are going to discuss in this section [ 11 1, [ 3 1.

The CMA diagram is a plot of the principal resonances and cutoffs

in X , Y2 coordinates. The result is that the Xe, Y2 plane will be
e'e e e

divided into a finite number of regions. Within each region the topology

of the refractive index surface is the same [ 74 ] .

For a two-component ion-electron cold plasma the subscript s takes

on the values e, for electrons, and i, for ions. From our definition of

Y , it follows that Y. = -Y m /mi . Hence, for a two species plasma
5 i e e i

the components of the dielectric tensor become

K0= 1-X (1+ me/mi) (B.26)

K 1 X L- Ye) + ( i+ Y me B.27

K =1- Xe L(l + Ye) + me (mi -Yem e)' (B.28)

and also

K 1- r(-Y2 +mm(i 2 - Y2 m2) -1 (B.29)
I 1± e [(L e) i e (i e eI

For the range of the parameters shown in Figure 20, we can

approximate K0, K, , K-, , and K very well by

K I- X ( B.30
o e

K1 ls1- X (I -Y) ( B.31)

( B.32 )K_1 e e
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K lZ1-X (1-Y 2)-
I e e ( B.33 )

since me < < mi. Figure 20 shows the principal resonances and cutoffs
in this high frequency regime. The various regions of the CMA diagram

have arbitrarily been numbered for later reference.

Ys / K ,- ohR Ye =K I /

aamj

K,

0 A

(D~~~~~~X

Fig. 20. Graph of principal cutoffs and resonances for high frequencies

At these high frequencies the curves for the principal cutoffs and reson-

ances become nearly straight lines or parabolas.
Figure 2is a plot of the principal cutoffs and resonances for the

hydrogen-electron plasma for the frequencies Y2 1 X 2 1. The axes
e e

are log-log scale and the various regions have been arbitrarily numbered.
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/01
00

>P t K.~O

0~~~~~0

/0~~~~~~~~~~~0/~~~~~~~~ K, = 0

/ I 1 I I

Fig. 21 . Graph of principal cutoffs and resonances
for X 2 l and y2 Ž 1.

e e

The various principal resonances and cutoffs have names which are given

in Table 3.

TABLE 3

NAMES OF PRINCIPAL CUTOFFS AND RESONANCES

C urve Name

K, = 0 Ion cyclotron cutoff

K-i = 0 Electron cyclotron cutoff

K = o Plasma cutoff
0

K, = X Ion gyro-resonance

K.- = ca Electron gyro-resonance

K = 0 (Y2 < 1) Upper hybrid resonance (UHR)
± = o (ye

K = 0 (y 2 > 1) Lower hybrid resonance (LHR)± e
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We indicated earlier that within each of the numbered regions of
the CMA diagram the topology of the wave phase velocity surface is
unchanged. Table 4 lists sketches of the phase velocity surfaces along
with the corresponding refractive index surfaces for the regions of the
CMA diagram which we have shown. The magnitude of the refractive
index is simply given by the reciprocal of the magnitude of the wave
phase velocity times the velocity of light in a vacuum. The dashed
circles represent reference surfaces for waves propagating in free space.
In Table 4, the magnetic field B is assumed to be pointing vertically
upwards. R and L refer to right and left circularly polarized waves while
0 and X refer to ordinary and extraordinary waves.
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TABLE 4

PHASE VELOCITY AND REFRACTIVE INDEX SURFACES

FOR VARIOUS REGIONS OF THE CMA DIAGRAM

Phase Velocity Surfaces Refractive Index Surfaces

R

PIOx

.0

1.
/ ' 0

'� �

4

5

L

1.
/I-N, g x An/

II

R 

t 8 I
A _ /

N1"

0r

O

Region

1

2

3

6

7

8

9

10
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Ray Direction in Anisotropic Plasmas
For a cold lossless magnetoplasma the direction of energy flow

associated with a given plane wave propagating at an angle with
respect to the magnetic field is given by the perpendicular to the refrac-
tive index surface for that wave together with the requirement that the
angle o between the group velocity and the phase velocity (or n) be an
acute angle 20 ]. However, for more complicated plasma models this
may be an obtuse angle as is evidenced by the work by Bitoun et. al
[ 8 ]. In such cases the ambiguity as to the sense of V can be resolved
by determining the sign of ( a / k).

got gn~ o V

Fig. 32 . Geometrical relation between direction of the group
velocity and the refractive index surface

The angles and ?I shown in Figure 32 are related by [74 ]

tana = - 1 n (B.34
n b?9

where the angle af is taken to be positive if the vector n lies between V
and B [75 ]. Therefore for a given propagating plane wave, the angle
O at which the ray propagates is given by

0= + a . (A
. I
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For a cold plasma we showed in the previous section that the

dispersion equation can be written

an4 + an2 + C = 0 (B.36 )

where

67= -K sin2 -Ko cos2 (B.37 )

i = K K-1 sin 2 + K K (1+ cos 2 (B.38 )

C =-K K 1Ko * (B.39 )

Using this dispersion equation we get after taking b

rl + 4 n3 n + n + 2n zr + 0. (B.40

Since - = , this simplifies, after dividing through by n2, to

a n2 + 4 n2 1 n - + - + 2 1 n =0 (B.41

Solving for 1 6n givesn gve

aa 2,!
1 bn _ z

n b 467 n2 + 2 (B.42

From (B.37) and (B.38)

= (K -K) 2sin cost (B.43 )
0 ±

=( 1 K -K K 2 sin ? cos (B.44)
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Hence,

tanx = [(K - K) n2 + K K-K K Zsinz§cosi

L 4 n2(K sin2 + K cos2 +2 K K sina

+ 2K0 KI(1 + cos2 )]1 * (B.45

Thus for a cold plasma we have a rather simple formula for determining

group velocity direction as a function of a9 when the components of the
dielectric tensor are known. For our numerical studies we use a similar
method to find the direction of V for a warm plasma. For our warm
plasma Models A and H, equation (B.36 ) is replaced by (G.17) and

(G.5 ) respectively. As noted by Allis, et. al. [ 2 ], V corresponds
to the direction of the sum of the Poynting flux and the acoustic energy

flux in a warm plasma.



APPENDIX C

ADJOINT MATRIX

The equation which relates the excitation current (ex) to the

excited field S is the "wave equation"

toA 8 = i(Co W v ( ex C.1)

where the "wave matrix" A is given by

A _Cn IV:n n -Kv- C.2)

Solving for the electric field, we have

d = i (cCD wAY' ah i(ex) .(c .3)

Here (67 v) is the adjoint matrix of (A ) and A is the determinant of
( - v-C

(Ar V-) 

The purpose of the present section is to analyze the explicit forms

of the adjoint matrix for Models H and A. Note that these models differ

only in the explicit expressions used for the dielectric tensor components

K V-U
Before we consider each model separately, we shall discuss some

properties of the adjoint matrix which are common to both. Using cylin-

drical (n , wD, nz) coordinates, the p dependence of AI C is simply

given by ei(V -)S for all models. Therefore the adjointa varies

like e while the determinant A is independent of S. Separating

the (pdependence, in the adjoint, we can write

6 a-v (n nP ) = x (n n ) e (UV)P ( C.4
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Hence, the electric field cS can be written

do i(soxA) 1 ei(V-U)gx (ex) (C.5

The matrix (X a ) is the adjoint of (A 'v ) where the latter
matrix is defined by the equation

A al e (C.6)

That is, A' is A with the (Pdependence removed. In many cases
( AlV ) is a symmetric matrix and in these cases (X. ) is also sym-
metric.

In addition, for each of our models the following symmetry holds
K (nao) = K Ln , -w). Therefore, it follows that we also have
XV a (E ,) X *Vr (n,-co). If Xis written in terms of k instead of n,
then k must change sign also when using these symmetry relations.
These symmetry properties of the matrix (X a) reduce to only four or
five the number of components of this matrix which must be worked out
in detail. Consequently, there results an enormous savings of compu-
tational labor. For example, if we compute X , All, XAl and O
explicitly and the adjoint matrix X is symmetric, then the remaining
components can be obtained from the relations X, ( la,)Xjn - ),
XL-, = 11 , o 10= io, o (, ) = X (, -) and X, = X,

The Adjoint Matrix for Model H
We are going to give here the explicit expressions for the compon-

ents of the adjoint matrix using the dielectric tensor of Model H. More
precisely, we are going to give the components of the matrix obtained by
multiplying the adjoint matrix (X V ) by De Di where, you recall, we
had (4.15 )

Ds= 1 - (n g +n2 ) , (s=eori).
s I sx z (.(C.7 )
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The reason for multiplying each adjoint element by D eDi is to obtain

simple polynomials in n , whereas the adjoint elements by themselves,

are more complicated functions of n .

Using the definition of Xv a along with our expressions for the

dielectric tensor K for Model H (Chapter IV), and applying some matrix

algebra we find that we can write

D D =A° +C [-(n 2 g +n 2 )XA +a 2 x' +
e i V-U V-U s I sx z v-a s sV-a

E ¶j (n g + n2 ) (n g +n2)0 +

tE E. u2 [' X"e V-(n 2 gi. + n ) X' v - i C.8
ee 1 1 eva Ia z ev-a

The quantity ( ) is the adjoint matrix one would obtain for a cold
V-ar

incompressible plasma. Explicitly, it is obtained from

=n + n [ n 2 _K - n2 Ko + K 1 Ko C.9

= n2 [n2 - K ] + n4 - 2 n K + K1 K 1 ( C.10)

IT n4 + 32 n2 (n2 _K-) ( C.11)
± ± ~z

A)%o = 2 2 n3 n + 2 2 n1 n (n 2 -K 1 ) (C.12)
I ZI z z C 2

Note that D eDi A- is written in such a form that we can use it for

dealing either with cold plasmas (e = i = 0) or single component warm

plasmas (e # 0, i = 0) or two component warm plasmas (E °' 0, 7 ) .
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For the temperature dependent part of D Di ( )we have

X. 4~~ 2+ + 1n2F2n2 2s = n2 g2S+ 2 n[nz (1 + 2 g+Ko g+ + n2 (n2 _ K 1)
(C.13)

X' n4 g2 + n2 [n2 (g2 + g ) - K1 g2 _ K g1 2 (C.14)

S ± sx 2 L z (sx (C 15)

AI10 - 23/2 In3 (-3g g2S+ 22 n1 nz (nz K_1) g (C.16)

In addition,

X"1-i 2 n2 n2 g (g - g. ) (C.17)e I z e+ e+ i+(C17

e 4 e + ex ix

e' = I n ge- i+ ge+ (C.19)

l 23/2 n3 nZ i+ e e+ i+ (C.20)

These expressions give us the explicit forms for DeDi Al- 
DeDi Ao, DeDi AXi, DeDi X1. The remaining components can be easily
obtained by use of the symmetry properties of X . In particular note that
X is a symmetric matrix for Model H.
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The Adjoint Matrix for Model A

The adjoint matrix for Model A is obtained by forming the adjoint of the

matrix A' given by equations (C. 6) and (C. 2). The dielectric tensor to be

used here in the expression for A', is the one derived for Model A, that is,

equation (4.56).

Defining the quantities 1

al-, =2EX g gs- 2 (d Sl+ d)

Cl = EX g2 (d g + d
5 5- Sl S- Si

a = X g d C = 3 ZX d00 s sx s11 s1

all= E s gsx (d S+ds dS)

blo =v ' j XS g- { dSI1 (1 + g) E+ d ( C.21)

the explicit expre s s ions for the components of the adj oint matrix , for

the case of a lossless plasma retaining only terms to first order in

temperature, are the following

A1= 1 X01.1 + n { 2 (a + all00

+ n fz2 [ (1-K.1 ) a0 - K0 a-,,+ 22 b..1 + 0 c + cll] }

+nz c - n2 [K C-.. + Kc ] (C.22)
z oo z 0 oo

X ~~+r nIf(a,...a..i+a 100 = A 2{ + a) + all

+ nl { n2 [(1-K) a3 + (1 -K _1) a + (ca1-31 + c-.,) ] }

+ n4 [c1 - + C-11 ] - n 2 [K1C_1 + K1C1 _ 1 ] (C.23)

= + n {2a0 - ai1)

1+ n {ni2 [-2 U~b1 0 + b_1°) + c CO]) + kO a11 (0.24)

o= 4o + n3 {n [ 2 2 (a-, - all) - i (blo + b 10) ]}

+ n n3 [-b + 2 C-,i + n K_1b10 } (C.25)

The remaining components are obtained via the usual symmetry relations,
noting also that for the lossless plasma .Zand hence X is symmetric.
±These quantities obey the symmetry property a (u = a* V (-w) with

similar relations for b_, and c -a .
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EVALUATION OF SELECTED INTEGRALS

A Useful Integral

fdx x J (axjJt(ax)/II (x2 -Z2 )=1 ri I (a z )[fl(z 2 _z2 ) 1

s m m 2 j 5 jm jjm

H(1) (az), Im z.> 0x |t ( D.1)
(Ht) (a z)Im z <0

provided +s-t is an even integer and t|-|s| -2<t<2n-1

and zm I is bounded.

Proof. Following Watson [85, page 428 , we first consider the integral

ZC+1 nri _Z J f(z) dz where f(z) - z (az) H ) (az)/f1 (z2 -z 2 ) ( D.2 )
5 t m m

c

and the integral is evaluated over the contour c = c+ + cR +c_+c r

shown in Figure 23. Im z

A _ /cRRez
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Fig. 23 . Integration Path for the Integral ( D.2 )
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The advantage of choosing this particular contour lies in the

property that, under certain conditions, the integral over the large

semi-circle vanishes as R - - while the integral over the small semi-

circle vanishes as r - 0. In order to determine the range of parameters

for which this occurs, we need the expansions of the Bessel functions

for both small and large arguments. For integer s and Iw « << 1, we

have

is (W (w/2) s/s ! , S o . ( D.3)

Since, for integer s,

yi (W) = H~ JS (W) , so >, ( .

then for negative integer orders, the small argument expansion of

I-S (W) is simply

(W) (-) (w/2) /s! , s>O. (D. )

( 1 )
The Hankel function H is related to the ordinary Bessel functiont

it and the Neumann function Nt by the equations

(1)
H = t t ( D.6)

Since, for very small arguments, H ) varies essentially like i Nt,t 
we can use the small argument expansion of N for t an integer,

to write

Hi (W) -i 17 (t - 1) !(2/w) , t> 0 ( D.7

H0() (W) i z7Fl [n (w/2) + C ( D.8

where C here is the Euler-Mascheroni constant.
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Using the relation
(1) it H (DHt = e H~ (D.9)

allows us to write

(1) i t 1 tH(1 (W) i- 1 (t -1)! e (2/w) , t>O . (D.10)

ForIw- w >> I, and jarg w < 7r wecanuse

the asymptotic expressions for the Bessel functions,

1
JS (w) - (2/1 w)2 cos (W 1 s/2 - /4) , s (D .11)

Ht (w) (2/1T w) exp Li (w - 7t/2 - f7/4)j, t > - . (D.12)

For negative integer orders, we have

Ht (W) 1 exP(W+t/2- /4)], t-. (D.13)

Note that

Limit (1) +i 0 (D.14)
R- Ht (R e )= 0(D14

if 0 t < , that is, H ) vanishes over the large semi-circle in thet
upper half plane.

Inserting the small argument expansions into the integral over cr
we find that

|lf f (z) dz ' I f (z) 11 dz
c cr r

rt,+2+ 1 S -t I , t Fg~ °

S const (D.15)
rt'+2+ IS I r t= 
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Therefore

Limit j f (z) dz = 0, if t> It 1- Is - 2. (D.16)r-01
cr

Similarly, for the integration over the contour using the asymptotic

expansions, we get

j f (z) dz const * 12 n (D.17)
cR

Therefore

Limit [
R- IC f (z) dz = 0 if, t < 2 n - 1 (D.18)

cR

We consider two cases corresponding to whether a particular root

z; has a positive or negative imaginary part. If z. is pure real, we

consider the contours passing either above or below the singularity z.

If zj lies in the upper half plane the integral (D.2) becomes
t ~(i) n 2 2

ir i Z. J (a z.) H (a z )/rj (z. - z2 ) +217r i (sum of residues at other
I s t im7&j 3 ) poles) . (D . 9)

When z. lies in the lower half plane - z. falls in the upper half plane and

(D.2) becomes

7r i (-z.) J (-az ) Ht (- a Z.)/ r (Z - Z2) 27r i (sum of residues at
J J t 3 mj m other poles) .

(D.20)

Making use of the symmetry relations (H.21) and (H.22)' w7ith

s and t integers, (D.20) becomes

t,+s~t t, (2) n 22
- i H- Zj J (a ) H (a z.) / n (.2 _ Z )+2 ri (sum of other

s Jt j j m re(sidue s).

(D.21)
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Finally, we can write

dz z+ (az) H(1 (az) /r i _Z f f .dz -: i JS(az;
c m c J

n H"') (a z.), Im . > 0
[ fl(z -z) *(D.22)

mj jH | t+s+t+1H(2)(az.) Im z < 0
t I 

To relate this answer to the integral we are trying to solve, namely,

Jdx x 1 J (ax) t (ax) / 1 (x _ Zm we write, for r -O and R-
O m (D.23)

Uf(z)dz= J f(x)dx + f(x)dx . (D.24)
c ~ ~ ~~~~~oo

C

In the integration over x < 0 replace x by -x, then we get

f ) dz dx x JS (ax) LHt() (ax) + e (t+5t) H(2) n (x2 - 2

c o m

Replacing Ht and Ht by Jt i Nt we obtain the relation

J f (Z) dz = dx x +1J (ax) ei r(,+s -t)/2 ri (x2 z2

cm

X 2 { t(ax) cos L (t+s-t) 7/2 + N (ax) sinLR+st,/2 (D.26)

If t,-s-t is an even integer, then this reduces to

Jf(z)dz= 2 J dx x JS(axjt (ax)/ 2 (x - o (D.27)
c o m
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Therefore, we finally arrive at the solution we were seeking, namely,

0 n

dx xt' JS (ax) It (ax)/ ( _ z2 )= 1i ) z J (a z)
o mj

n Ht (az.) , Imz j> 0
x [ 11 (Z2 _ 2 - (D. 28)

MXzj - m (-) H 2 )(azj) Im z< 0O

provided t+ s- t is an even integer and, It - Is 1-2 < < 2 n-l.

Integrals Related to Weber' s Second Exponential Integral

Weber's Second Exponential Integral is defined as [85, p. 395 ]

- e- (at)tdt = (2q 1 e a/2q In (a2 /2q) . (D. 29)

To cut down on the amount of relatively simple algebra presented, we

indicate only the METHOD of evaluation used for each integral. Also,
in this section the argument of the modified Bessel function is to be

understood to be given by - a2 /2q

co
qt 2

e It (at) ' (at) t dt = (a/4q2) e- t- I +I1 (D.30)j 0 n n -n nzD30
METHOD: Take b /ba.

e-qt2 Jn (at) t3 dt = (2 q e [(1 - ) I + u I'] (D.31)
d~~

0
METHOD: Take a j q.

~qt2-
- e J (at) Jn (at) t3 dt = - (2q) 2 e ;[(1 - - n2/p) I + (1+ 2u) I0 nn L n (D. 3$ 

METHOD: Eliminate Jn using Bessel's equation ( H.28 ), and use(b.)
to obtain the result shown.
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S e- hJ2 (at) t3 dt = (2q 2 ) 1 el [(n2/ 2 p) I + (1 - F + 1 I

METHOD: Form b 2j/ ba 2and use c. (D.33)

e In (at) JnI (at) t2 dt = (2aq) e [(n + 11) In + I] (D.34)
0

METHOD: Replace Jn1 (at) by I (at) + (n/at) In (at) and use(a.)and-o

to evaluate the resultant integrals.

0 e"1 l (at) 1n 1 (at) t dt = (L/2q2 ) e> [I- (D.35)

METHOD: Solve (Jn- I Jn+)2 4 2 for Jn+1 Jn-l substitute this

into the original integral, and use(b)hnd(d) .
( 2

e qJn1 (at) t3 dt = (2 q2Y)1 e FL n I +(1 - p + n)I' + pL I"]

(D.36)
METHOD: Use(hWwith n + 1 replacing n, and express all modified Bessel

thfunctions in terms of - order Bessel functions using the standard
recurrence relation i; In = I' + n I .

Integrals Related to the "Plasma Dispersion Function"

The "Plasma Dispersion Function" Z) is defined by

-x2

z(C) 72 x - (D.37)

for Im > 0 and as the analytic continuation of this for Im C 0.

The "Plasma Dispersion Function" satisfies the differential equation
[22].

Z'- 2 (1 + Z) .(D.38)

This property and the definition of Z are all we need to evaluate the

following integrals. As in the preceeding section, we shall only

indicate the METHOD of solution.
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f~ ~ ~ = _X =B2 Z.(U (D.39)
co

METHOD: Take the derivative of Z, perform an integration by parts on

(a.) and compare the two results.

2 -x 1
e = AWECZ, () (D.40)

co 

METHOD: First perform two successive partial integrations on (b.) and

note that the remaining integral is proportional to Z" as obtained from

our definition for Z, then eliminate Z" by using the differential equation

satisfied by Z.



APPENDIX E

SPECIAL CASE

For the special case of a non-relativistic charge spiraling in a

cold collisionless plasma our formula (5.79 ) for the power loss simpli-

fies to

= Q2 (47r IV Ic 2 )-1 ; Z da X x
0 z j~m P 0

I -0 P /ei(v U)ir Xv a 1 p Ip EK (nj 2 n2 E.11 - a Av- a U + U + Kli j nm]I (E.)

where j and m represent two various modes in a plasma and nz is to be

replaced by P.- (1+ pY) in the integrand. The purpose of this section isz
to show that this formula for the power loss is equivalent to that derived
by Trulsen and Fejer [ 80 ], hereafter referred to as TF, as given in

their formulas on pp. 833-834.

Letting

= sgn ( E.2 )

and writing out the summations over v and a using the fact that (Xv ) is
a symmetric matrix for the case of a cold collisionless plasma, we

obtain

Q(47r 0 1 Vz J dco I KJ (n2
- n2 )| x

|I X'2 1 +i +V1 AlP+1 I p - 22 V Z L X1 J P p+1

+ V2 A 122 V Vz i. X01p 'p-i + V X00 21 ( E.3
I P-1_ PP1 P
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Eliminating the Bessel functions of the form JpI, using the identity

(E.4 )

results in the expression

P = Q2 (47r co I V c 2) l y

i m

v2 p2

1I i 2 -( 1 + 2 

+ p Jp {i- i2I 1 1 -

I f dww IK (n2 -n 2 )V
P=-o 0 .m

V V 2 2(Ao+Ao)+ V2 Xo

X-11 ) + i 2 V V L 2 i ( X 10 + X01 )

(E.5 )

This

form

can be expressed much more compactly by introducing the cartesian

for the adjoint matrix as given in Appendix A . Thus,

P = Q 2 (47reolVI c2)-1 r
i m P=-co o

dw |wK (n2 - n2 )K
1. Ii I im

V2p2 2VV p
12 -: i 2 - X + V2

I p u2 Axx~ - u xz z zz }

2 V2 p I';V X

+ I J i U xy + i 2 V V L p yy ( E.6 )

Since TF have expressed their results in terms of the wave propagation

vector k whereas we have used n, we transform to their notation using the

relation n = ck/w. Thus our adjoint matrix X is related to their adjoint

matrix , by
- ,4 , _ _ I

i (u =p i T �
P±l u p

r2 2 - N � I
+ p V1 2 xi-, - 2 ii + -n ) f

X = ��- A -
cl� =

( E.7 )
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Likewise, if we use their relation

k 2 =(2 el)-' 1 4R) ,=1,2), (. 1 j ~~~~~~~~(E.8
since our K equals e1 of TF, we have

IK (n2 -n2m)I=RC/ . (=E .9 )

Finally, we need to use u = k V / which follows from ( 5. 15 ) for a

non-relativistic particle. Inserting these expressions into (E.6 ) we

obtain

P = Q2 (4T IV 1c2 )-1 o 5 dco IR c 2/c2 K'
modes p=- o

r2 2V pf

{E Xx- k Axz z ZZ p

-iV Lf-~k A -V A J+V A 2 I. (E.10± I. xy ZY y p p I ~yyp

Recall that our quantity Ocontains the sign of the charge whereas in
TF it is always a positive quantity. It is to be understood that in the

integrand k is replaced by (co + p 92)/V from the emission equation.

This agrees with the expression which TF use for the emission equation

only if we are considering a negative source charge. Hence for Q < 0

we get

P Q2 (47reIV IC 2 E F S d&IRO 2 /C 2 K1'

Q< uo0z modes = - o

A2+2V pIaI ± A k Ax + V2 A } J2

1{ kP.j A -V A }j i +V 2 A I,2I. (E.11)
k ± zy p ± yyp E1
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This agrees with the formula obtained by TF if one allows for differences

in the physical units used by making the replacement -- (47r)-l, which

allows us to re-express our results, derived using MKS units, into the

gaussian units used by TF. When Q > 0, we can put our emission

equation into the same form as TF by making the replacement p -- p.

Doing this we obtain

co co

PQ> Q 2 (47r IV IC 2 ) - f dwwlR?2 / 2 I-1
Q>0 0 Z ~modes P= o

r 2V pv2 

I {77 A N + M +k i\zVZ AZZ} Jp

-i 2 V AXy -V Ayl J Jo +V±2 A A I ( E.12)
1 k y z yz J p p yy p

which also agrees with the expression obtained by TF after replacing

I by (47T)1 .



APPENDIX F

THE EMISSION EQUATION

From ( 5 .79 ) we find that the condition which must be fulfilled in
order for there to be radiation from a spiraling charge moving through a
plasma is that

n =g ~+ pY/Y). P. 1)

This is known as the "emission equation". If we write ( F. 1 ) in terms
of the wave propagation vector instead of the refractive index and con-
sider non-relativistic particles, then

k = CA+PS . (F.2z VF2
z

Now throughout this thesis we have assumed that all of the field quan-
tities can be described by a sum of plane waves of the form

eik. x+ik y+ikz Z-i t ( F3

Therefore equation ( F2 ) tells us that a spiraling charge in a magneto-
plasma can only excite those plane waves whose propagation vector

Acomponent along e (the direction of the magnetic field in the magneto-
plasma) satisfies the emission equation. In this appendix we will
examine the meaning of this equation and explore some of its conse-
quences.

In order to learn more about the meaning of this equation, we
shall show alternate methods of obtaining it, first by studying Doppler
effects, and second by using quantum mechanical considerations.
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Doppler Effects and the Emission Equation

Consider the following situation. Suppose we have two coordinate

systems, x, y, z and x', y', and z', and let us assume that the primed

system is moving with respect to the unprimed system with the velocity

V as shown in Figure 24.
z

X Xi
vz

Fig. 24 . Geometry for obtaining the emission equation
via Doppler effects

Then if we have a radiator of frequency a' moving with the primed coor-

dinates, it will emit radiation which can be understood by an observer

fixed in the primed system as a superposition of plane waves of the form

eik' *r' - i wt' ( F )

The question arises as to what these plane waves will look like as

viewed by an observer in the unprimed system. This is, of course, a

straightforward problem involving Lorentz transformations.

Because the phase of a plane wave is the same in both the primed

and unprimed system, it follows that since (r, ct) is a four-vector

then (c k, co) must also be a four-vector. The Lorentz transformation

allows us to relate vectors in the primed and unprimed coordinate sys-

tems as follows:
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ck'x 1 0 0 0 ckX

ck, = 0 1 0 0 cky

ck, Y 0 0 -yZO] ck7

0 0 YZ zYZa@'@ ~Yzz yz 

or inversely,

ckX 1 0 0 0 ckx

cky 0 1 0 0 ck,6

(F.6
ck, 0 0 y ckz

0 0 YZ0~zz z

where yz -- (I_ p2 )2 with z = V /c. From ( F.5 ) we get the equationz z
relating to ',

= kz VZ + '/y . (F.7

This says that the frequencies ' appear to be Doppler shifted to an
observer at rest in the unprimed coordinate system. Neglecting relativ-
istic effects and expressing ( F.7 ) in the form of ( F.2 ) gives

k = ( F.8)z V 8
z

Identifying ' with the frequency -pQa, we obtain the emission equation

( F.2 ). Hence, the emission equation is another manifestation of the
Doppler effect.
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Quantum Mechanics and the Emission Equation

In this section we present another derivation of the emission

equation. We shall use a quantum mechanical approach to analyze the

radiation process. Suppose that the spiraling charge is in the state s

specified by the energy Es. From relativity theory we have the relation

between total energy E and the momentum components,5~~~~~~
E (M2C4+2Z c2+P2 C2) 2 (F.95 ~~z I

Now the energy eigenvalues for a charged particle spiraling in a

constant external magnetic field are well known [55 ], 1 43 1. They

can be written in the form of ( F.9 ) with the transverse momentum, p,

related to the quantum number s by

P M 1|(2s+l), s=0,1,2 . (F.10

Here s is the quantum number associated with the state s and fi is 27r

times Planck's constant h.

If the spiraling charge emits radiation spontaneously, then the

particle will go from the state s, specified by the numbers

fpz, I (~ F.ll1

to the state s' specified by

{PeT } {P-f k I S-51 (F.12)

By conservation of energy

f lw = E -E' E - [M2 C, +C2 (p -i k )2+c 2 M 1I (2s-2 +1)]2

5 5 5 z z

= E-E [1- 2c 2 fi p k /E 2 + c'fi' k / E2
ES ES [2C z z s z /s

2P MinIt c2/E2]2 . (F.13 )
5
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If the particle energy (E ) is much greater than the photon energy h t,
we can write

WSc2 p k /E - c2 kz2/2Es+ M I c 2/Es . F.14)

Using the relativistic expressions for Es and pz

Es M yc 2 , F. 15)

p MyV C F.16)

and taking the classical limit -1i - 0, the expression for the frequency
of emitted radiation is

RVZ k + PI I/y. ( F.17)

For non-relativistic particle speeds this becomes

,VE z z+ p Q. I ( F.18)

From ( F. 18) and ( F. 10 ) we find that > 0 corrcspondis to a
decrease in the perpendicular component of angular momentum while

< 0 means that the transverse momentum increases. > 0 is called
normal Doppler emission and < 0 is called anomalous Doppler emission.
If = 0 the transverse momentum is unchanged. Comparing ( F. 18) with
the emission equation ( F.2 ), we see that for a positive charge (i.e.
S > 0), p = , and for a negative charge (i.e. < 0), p=-p. Table 5
summarizes these conclusions.
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TABLE 5

SUMMARY OF SIGNIFICANCE OF POSITIVE AND NEGATIVE HARMONICS
FOR SPIRALING CHARGED PARTICLES

HARMONIC TRANSVERSE DESCRIPTION
(p) MOMENTUM (DOPPLER)

. 0) NEG. INCREASING ANOMALOUS
° ZERO UNCHANGED NORMAL

0 POS. DECREAS ING NORMAL

NEG. DECREASING NORMAL
ZERO UNCHANGED NORMAL

v POS. INCREASING ANOMALOUS
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Connection Between the Emission Equation
and the Refractive Index Surfaces

The emission equation can be quite useful as an aid to under-
standing the frequency spectrum of radiation excited by a spiraling
charge when it is used in conjunction with the refractive index surfaces.
For our present purposes it is sufficient to consider the simple case of a
cold plasma. The refractive index surfaces for a cold collisionless

electron-proton plasma corresponding to the "operating line" R2 = 0.4
shown in Figure 2 are given in Appendix G.

From the curves presented in the appendix, we see that for a cold
plasma there are three topologically distinct refractive index surfaces
which can occur. These three surfaces are sketched in Figure 25. The
vertical direction in Figure 25 is the direction of the external magnetic
field B; the radius from the center of each figure to the surface is equal
to the refractive index n. These diagrams are really cross-sections of
the true surfaces which can be obtained by sweeping the curves 1800
about the vertical axis.

Bo Bot Bot

Fig. 25. The three topologically distinct refractive index surfaces
which exist in a cold collisionless magnetoplasma. The external

magnetic field is in the vertical direction. A radial from the origin
to the surface represents the magnitude of the refractive index

in the radial direction
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The simplest surface to analyze is the closed surface shown in

Figure 25 and shown enlarged in Figure 26.

Bot~~~nzc

n

Fig. 26 . Typical shape for a closed refractive index surface
with the critical index nz1 indicated

This surface closely resembles the refractive index surfaces of

ordinary solid dielectric materials. Hence we would expect Cerenkov

radiation along those portions of the "operating line" where we have

such surfaces, provided the particle speed is large enough.

For a given frequency, harmonic number and component of non-

relativistic particle velocity along Bo, the emission equation specifies

the allowed value of the z-component of the refractive index, namely,

nz = (1+ p Y)/ z ( F.19)

In order to have radiation in these closed surface modes the inequality

En < n (F.20)

must be satisfied where n is the largest positive value of n for our
ZC 1 z

surface, as illustrated in Figure 26. Substituting for nz from the emission

equation, this inequality can be expressed as a bound on the allowable

harmonics for which radiation is possible. When 3zŽ0 this range is given by

-1+ P n ) <_p Y <- (1 Li zcl ( F.21)
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In many cases there do not exist any values of p which satisfy this

inequality and in these cases no radiation is emitted.
The next surface we consider is shown in Figure 27, where we

have also indicated two waves which might conceivably be excited by

particles having different velocities. Note that wave 1 has a component

of group velocity Vgl in the direction in which the particle is moving,
whereas wave 2 has a component of group velocity Vg2 antiparallel to

the particle motion.

nz

Vg2

n
I

Fig. 27. Typical refractive index surface for modes which are
evanescent in the direction of the magnetic field

Also note that in those regimes along the "operating line" where

the surfaces are open along the magnetic field, Cerenkov or magneto-

bremstrahlung radiation will occur for any particle velocity 13 and for

all harmonic numbers p, since nIis real for every nz which satisfies
the emission equation.
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The last surface we must examine is shown enlarged in Figure 28

with the critical indexes nzc2 and nzc3 illustrated. Such surfaces are

open in the directions transverse to the magnetic field. In those regions

-n z = (1+ pY)/ijz

n
1

Fig. 28 . Typical refractive index surface for modes which are
evanescent in directions perpendicular to the magnetic field

of the "operating line" having this kind of surface, there are several

possibilities for radiation. Consider the following cases.

Case 1. I n < nzc3 ( F.22)

When Case 1 applies there is no radiation.

Case 2. Inz I nzc2

In this case there is radiation, but only one wave is excited.

( F.23)

nzc3 < I z I nzc2 ( F.24)Case 3.
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When I nz I lies between nzc3 and nc 2 two waves may be excited
at the same frequency. One of these waves will have the radial com-
ponent of V in the same direction as the radial component of the phase
velocity vector while the other wave will have the radial component of
V antiparallel to the radial component of the phase velocity vector.
The inequalities given in ( F.22 ) - ( F.24 ) can be used in a manner
similar to that used in discussing closed surfaces, to generate allowed
ranges for the harmonic p.

In the case of a cold plasma it is possible to express the critical
indexes nC1 , nc 2 , and nzc3 in terms of the magnetoionic variables Xe
and y . ,Thus the locus of points corresponding to these critical indexese
can be plotted on the CMA diagram. The intersection of these surfaces
and the "operating line" determines the frequency spectrum of the radi-

ation. The interested reader is referred to the paper by Sasiela and
Friedberg 1 63 ] for details of this procedure.



APPENDIX G

REFRACTIVE INDEX DIAGRAMS

The following is an extensive listing of refractive index diagrams

obtained using: 1) a cold plasma model, 2) Model H and 3) Model A.

All surfaces are for a plasma having R2 f2 /f 2 = 0.4 which corres-
be pe

ponds to the operating line shown previously in the CMA diagram of

Figure 2.

Cold Plasma Real Refractive Index Surfaces

The dispersion relation for a cold plasma is given by (see Appendix

B)
a n +I3n2 +C= 0 (G.1)

where
a= -K sin2 t-K cos 2 C G.2)

1 0

B= (K1 K.1-KoK )sin2 7+2KOK, (G3

C,= -K, K-1 Ko (G.4 

The surfaces shown in this section were obtained using this form

for the dispersion equation.

The plasma is assumed to be composed of electrons and protons.

Collision effects have been neglected. All Index Surfaces have cylin-

drical symmetry about the magnetic field direction; only cross sections

of these surfaces are shown.

The figures are in order of decreasing frequencies which are indi-

cated on the graphs by the values of Xe. At any given frequency there

are at most two real refractive surfaces for this model. The surfaces are

somewhat arbitrarily numbered by subscripts on the value of Xe so as to

assist in the identification of modes.
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Fig. 29. Cold plasma refractive index surfaces for frequencies
above the upper hybrid resonance. Curves are labeled

according to values of Xe with R2 = 0.4.
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'.82

Fig. 3 0 .Cold plasma refractive index surfaces for frequencies
between the upper hybrid resonance and the electron
plasma frequency. Curves are labeled according to

values of Xe with R2 = 0.4.
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Bot

1.22

Fig. 31. Cold plasma refractive index surfaces for
frequencies between the electron plasma frequency and

the ion cyclotron cutoff frequency. Curves are labeled by values of
X with R2=0.4.
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10,

20

Fig. 32. Cold plasma refractive index curves for
frequencies between the electron gyro-resonance and the

lower hybrid resonance. Curves are labeled by values-
of X with R = 0.4.e
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got

40

Fig. 33. Cold plasma refractive index surfaces for
frequencies between the lower hybird resonance and the ion

gyro-resonance. Curves are labeled by values of X with R2 = 0.4.e
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io7

80

Fig.34.Cold plasma refractive index surfaces for a frequency
below the ion gyro-resonance. Curves are labeled by

values of X with R2 = 0.4.
e

,.I. -.................... . ...........

�-*t
l



168

Refractive Index Curves for Model H
We shall assume a plasma containing only two charged species,

namely, electrons (s = e) and one type of ions (s = i).

The dispersion relation for Model H in both spherical (n, , (P)

and cylindrical (n , n ) coordinates is given in the form of poly-±z
nomial s

Ssn8+S4 n6+S3n4 +S2n2 +S= 0 CG.5

and

C5 n8 + C4 n + C3 n4 + C2 n + C1 = 0 * ( G.6

Multiplying equation ( B .3 ) by rl DS, inserting for K the appro-

priate expressions for Model H and abbreviating sin # by S and cos 

by C we find after extremely tedious algebraic manipulations that

S= - K1 K 1 K (G.7

S 2 -+ K K S + KK(1 +C2)+K(I+ 7 C K K K S2 + C2 )

+ S2 KO S 2 (K g2S+ + K g2_ )+ K K 1 C]} (G.8

S, =-K S2- KO C2 E f (gSX S2 + C2) FK K S2 + KO K ( + C2)j

+ K, (gS S2 + C2 )2+ -K 1 (g S2 + C2 )2 +KC2]

+ U2 2 K S2 [ S2 + (g2 + g2 )(1- S2 )}S I 9Sx ~ s+ s- 2 1 

e KfK1 K K. (gex S2 + C2 )(giX S2 + C2)

+ 2) t (gt S + C2) J KO S2 (Kj g2++ _ g2s + K1K1c2 
iL ex S+KS- K -

S 

e S+ ~LS+2 22 Fii , K- 2 S+(g...-gt) + KC gt (gt - g )

+* KOS2 (g 2 g2 ( g)] } CG.9
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S4 = c(g S2 + C2) [(K + 2 ) S2 +(K + 2 )C 2 1L- ssx L± s 5 1s

Ce {C(gex S2+ C2) (giXS2+ C2) YKK1 S2- KoK (l+ C2)]

a2 ( S2 + C2) [IK1 y(g S2 + C 2 )2 +K_ 1 (g S 2 + C2 )2+

K1 C2 + Ko S4 g + O S2 (1 S 2 )(g2 + gs) 2

+e2iS2 t s2 C2 (g - S+ t+ s

e 1 gs g 9 2 gt + 2 g g )+

44(-g W++gsx~tx+ 9C (g t + g gt- g2 - g2+)]}

(G. 10)

S6 = - {e (i 'I(g S2 + C2 ) (g S2 + C2 ) (K S2 + C2

+7 a2 (g S2 + C2 )2 (g S2 +C2)
s7 5 sx tx S+C(fG.11)

Similarly, for cylindrical coordinates, using 11 D times equation
s s

(B.8 ), we have

C1 = - Ko (n2 - K ) (na - K ) + 7 fn 2 (n2 - K1 ) (n2 - K. ) (KO + a2)z z -s z z z ss

Ce i z (n2 - K1) (n2 - K 1 ) C G.12)

C2 = - nz (KO + K+ K1 + KO K + S nZ (2 a x + K + K +
s

Y 2+K"g )- n 2 (Ko K + K a+ + K1 c (Y g2sx z KfK 2 +... 1 g5 s

+ K K1 + KO (2 gS + 5 KO Cj2 2 + 2Yo Kgx+

aKK.2 g2 + ly0Ky~O 5- 5 2 a2 g + K K1 Ko g

e fi { nZ [ + K+; N g+ a gtx+2a gX]
r-

K1 K....1 + K K1 - e e- gi- ge+ i+
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7(I~~ 2 +K 2 + K1 2g
KtKo ag g + Ko a+2 g2 1

5o ss S+ sS
K, °S2 g I 2 iia 2 g2 + t a2 a2 g2 +

U2 2K0KI S + K K gSX + 2 K gtx °XS)J

2 [U'g. +K2g g_)
n2z[e2a(K ge- gi- + K ge+ gi+

@K Ui2 2 + K 2 222
(2Ko K21 f2 o K 2 2+e i s+

*K1ae a2a22 + K1 Ko +K 1 KgSj} (G.1 )

C, = Ki +' C{n2(K + 2g2+ 2 a2 g +Kg+ Kg) -

(SK..1 ofS g 2 + $ ce K g2 + + K o2 gSX + K1 K 1 gS +1K g)} +
z± g +x Ca + sx sx sx

{ 2 2 22 2
(L2 gix u s S_ gtX °% + Ko Xs+ g ) ], +- +KoKL

2g g. 1 +t o g gt+a t2t S t 

ex ix s tx s S

1 a aag2g - a2 2 2g g + K o g+

Ia a? g2C, + K + K g g + O g +
e 1 s +X g

K g a2 + a2 K g 2 g2 K g g

ex sgtx~sx ex s

22"2

n ei2 K geX 9ix - Ue K 2 gexgix+

U ~ g- a ll~S-f gS tg+ 

(a2 2 g 2 2 /4+ 22o K Xs

e ~sg 2)S (G.14 )

1~~ + x iJxs
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r

C4 = ,' c {as gS +K1 s +

,Ee Hi n [~ gX gi + K+ (-a 2 g2 - K g -ex gix 5K S X ± Sx

ga2 92 + 2g a2 g +
gt s sx +gtx as sx I

9ex ix 2 i + K K1 + KO K +

2 22 1 22 2

(aQ~ C~2a. 2 S g' / 4 + K-1 gtx Os S-

+ IK- gtX a g2+ + g}(2 ~~ 2 2 ~ a2 g )F(G.15)

C5 = ii 2 ,t gt s a (G.16)

Real refractive index surfaces for the case where only first order

temperature effects are retained (i.e. terms containing i E are

neglected) in eqn. ( G.5 ) follow. These surfaces are for a lossless,

electron-proton plasma with Te = T. = 2000 0K.

Refractive index surfaces are presented in order of decreasing

frequencies which are indicated on the graphs by the values of Xe At

any given frequency there are at most three refractive index surfaces for

this model. The real refractive index surfaces are somewhat arbitrarily

numbered by subscripts on the value of Xe so as to assist in the identi-

fication of modes.



*0
o o04- 8 ° 

,Q i $4 = 
Cl o D

U)

0 
U 

En tJ 4- l

+3 A 04
o ox

+4

0 

o l) 0+o

0 U)
-4

-; IoS 0

> Idf= 

0 0 (D

a sa j (
C)

0

> 0l4.' ClD

Ito

0~~

D Ho t)b' U) < 

0 V
(D

172

00
CY

01



0 .

Q J a o 4

Q Ul t m

Id ( DX

x- v 0° og

x 0

o) o U D1

v 4 o v

S.. -4

0)
000

. <O

. t. 

.t E. 0 * X

l o

4)

cr)~~~~U

X0 n U 0

0)0)

-4 I

173

fl J

a
ml



174

Fig. 39 Refractive index surfaces obtained with Model H (first order
in temperature) for frequencies between the plasma cutoff and the ion

cyclotron cutoff. Curves are labeled according
to values of X withR2 = 0.4.
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10

Fig. 40 Refractive index surfaces obtained with Model H (first order
in temperature) for the higher frequency portion of the band between

the electron gyro-resonance and the LHR. Curves are labeled according
to the value of X with R2 = 0.4.
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Refractive Index Surfaces for Model A

By substituting our expressions (4.82) - (4.87) and (4.77) - (4.81)

for the dielectric tensor elements into equations (B.3 ) - (B.6 ) and

(B. 8 ) - (B. 13), respectively, we obtain the dispersion relations for

Model A. In spherical (n, t#, qp) coordinates this dispersion

relation can be written

S4 n +S 3 n4 +S2 n2 +S1 = 0 (G.17)

where*
S4 = - ksin2 # [K'1-1 + K'-i1 + e'2,P K'-1 -1 + e i2 K11]

-cos 2 K' - 22 sin 9 cos A [eAP (K'o, + Ko)

+ ei< (KLo0 + K0 -1)] (G.18)

S3 = -K sin2 7 -Ko cos 2 + sin 2
' [K1 K'.1 + K 1- K-1

- t Ko K' 11 - f K' K. 1 - 2K K -I - 2 Ko K

+ 2 ei29 K h +' I' i29P Ko K'.- 1 ]

+ 2-2 sin z# cos z [ei'P (K'1o K-1 + K1 K )

+ ejp (K-1 Klo +1 + K'-1 K 1 )] Ko K'. 1 + Kbo K..1

+ Ko Ki-i + K'oo K1
(G.19)

S2 = sin 2 LK1 K 1 - Ko K1 + 2 Ko K1

- K'- 1 K- 1 Ko - K1 K'- 1 1 Ko - K1 K. 1 Koo (G.20)

S= - K1 K-1 Ko .
(G .21)

In cylindrical (n1, nz, (P) coordinates, the dispersion equation (with

no collisions) can be written

C4 n'l + C3 n'l + C2 n2 + C1 = 0 (G.22)

where

* Only terms linear in temperature are retained ; this is consistent with

the derivation of the corresponding dielectric tensor elements (see

especially p.42 ).
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C1 = n c - n [K + K (c. 11 + cl. ) + 2K oo]

+ n [ 2K Ko + K K c 1- + Ki Ko c 11 + K K 1 coo] -KK. K (G.23)

C2 = n [a0 0 + 2- (blo + b 10) + % (c1.1 + c_11) + coo ]

-n2 [ Ko K 2K a + K (a.. + a) + 2½

* (K1 blo + K_, b- ) + 12 K (cl- + c-. 1 ) + K 1 c1 l + K.a

+ KO ] + KK + KK 1 K_1 K a, + 1 KKO a13

+ KK.a a (G.24)

C3 = nz [a, + a + 2 (blo + b 10) + -(cj_ + c 1)]

- K± - l2(K + K) a - C(K + K 1) a1.. - Kall - KLaoo (G.25)

C4 = (a-, + a,) + all (G. 26)

where we have used the definitions (C. 21).

The following real refractive index surfaces shown in this section
were obtained from (G.17), for the case where collisions are neglected.

The plasma is taken to be composed of electrons and protons at a

uniform temperature of 6000 0 K. Refractive index surfaces are presented

in order of decreasing frequencies which are indicated on the graphs

by the values of X . At any given frequency there are at most three

refractive index surfaces for this model. The real refractive index
surfaces are somewhat arbitrarily numbered by subscripts on the value

of X so as to assist in the identification of modes.
e
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- 800

Fig.57 Refractive index surfaces obtained with Model A for frequencies
between the ion cyclotron cutoff and the electron gyro-resonance.

Curves are labeled according to values of X with R2 = 0.4.
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40

Fig. 64.Refractive index surfaces obtained with Model A for frequencies
between the LHR and the ion gyro-resonance. Curves are labeled

according to values of Xe with R2 = 0.4.
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APPENDIX H

RELEVANT FORMULAS, DEFINITIONS, AND PHYSICAL CONSTANTS

Physical Constants (MKS units, degrees Kelvin)
Charge of a proton, q 1.602 x 10-19
Mass of an electron, me 9.109 x lo-3
Mass of a proton, mp 1.673 x 10-27
Boltzmann's constant, K 1.380 x 1C23
Speed of light in vacuum, c = ( f )-2 2.998 x 108
Planck's constant, h 6.625 x 104
Planck's constant divided by 2r, -E 1.054 x 10-34
Permittivity of free space, 8.854 x 10-12

0
Permeability of free space, 11 4 r x 10-7

Electron to proton mass ratio, m /m 5.445 x 10'
Proton to electron mass ratio, m /m 1837
Electron charge to mass ratio, q/m 1.759 x 1011

e 1
Free space wave impedance, Z = (0/co)2 377

Conversion Factors
1 weber/m 2 = 1 tesla = 104 gauss

1 gamma = 1 nano-weber/m 2

1 joule =107 ergs

1 eV = 1.6 x 10-19 joules

192
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Plasma Parameters (MKS units and degrees Kelvin
unless otherwise indicated)

Electron cyclotron frequency, W ce= q B/me ( H.1 )

IWce I= 1.76 x 1011 B rad/sec (H.2 )

fce= Ic ce I/2r= 2.80X 1010 B Hz. (H.3 )

Electron plasma frequency, =(N q/m E (H.4 )
Pe e eo0

X, =56.5N (H.5 )
pe e

1
f =8.99 N CH.6
pe e

Electron Debye length, X = (KTe/m )/e (H7 )

xDe =69.0 (Te/N )2 (H.8

Electron thermal speed, Vthe = XDe Pe= (K em e C H.9 )

Electron kinetic energy, E kin= me c2 (y-l) (H.10)

where ya (1 - v2/c 2 )- is the Lorentz factor for a particle moving at the

speed v.

Eki = 8.187 x 1014 ( y- 1) joules = 0.5117 y-1) Mev (H.11)
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Formulas Involving Bessel Functions (Integer s)

This section contains those formulas involving Bessel functions

which are pertinent to this thesis. We use the notation that JS and NS
are Bessel functions of the first and second kind, respectively, H(1)

5

and H(2)are Hankel functions of the first and second kind and I is the
5 5

modified Bessel function.

a. Interrelationships:

JS WZ = 2 HS() + H (2 ( H. 12)

H (z)= (z) iN (z) (H. 13

I () (i Z) (-7r < arg z '2) (H. 14)
s 5

b. Recurrence relations for 1

Is C) = [JS (Z) + 1 (z) ] H.15

IS (z) 2 I l- (z) - (z) j (H. 16)

s (z) I () Is ( ) (H. 17

c. Recurrence relations for I

I (z) = 2s s- 1 (z) - Wz j ( H. 18)

I' (z)= I l (z)+ S1 z (H. 19

I1 (Z)=I' (z) + s ( ) (H.20s±1 s z s

1 The same recurrence relations apply to I , N , H"), and H 2 '.
5 5 5 
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d. Symmetry properties

Js(-Z) = -1 S (Z)

5 5
HS(1 (ei Z)= - H2iTV )(Z)

H (2) (ei7r z)=- e7rV H(1) (z)
5 5

I (-Z) = (l)S I (Z)
5 5

JIs (Z) = (-)5 S (Z)

H (Z) = () H(2 (Z)
-s s

I (z) =I (z)
I-s(Z 5 Z

e. Differential equation satisfied by J

2 j" + Z J+ (Z2 _ S2 ) J = 

f. Differential equation satisfied by IS

z 2 I + Z I' -(Z2 + S2 ) I = 0

g. Relations involving fractional orders

J/ ()= s iz -COSZ]

h. Sums of Bessel functions
co

iLsinM (L) isM
s--

co

e-iL sin M= (L) e-ism

sco

e =Y 1(L) es cS=- IcL esM r2

-iL cos M -L) (M+ir/2)
e = 7 I s=- e

( H.21)

( H.22)

( H.23)

( H.24)

( H.25)

( H.26)

( H .27)

( H.28)

( H.29)

( H.30)

( H.31)

(H.32)

( H.33)

( H.34)
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i. Integrals related to Bessel functions

i|r i(t a sin ) drP= 2 J,(a) (:H.35)

27r Co i (t p - a sin ) 2ra)J()H36

j. Small argument expansions

(Z)=(Lz)s (k (s+k)! , S20 (H.37)

I C(Z)) Ž k! (s+k)! 0H38

I (Z) = (Z )S 4Z2, ( H.38)

In particular, for IZ < < 1

10 (z) 1 + z 2 /4 + z4 /64

I. (z) z/2

Ia (Z) I 

Ii(z) = I, (z) -- z/2 + z3 /16

II (z) =I 1 (z)~ 2 (H.39)

I' (z) = 1X(z) 3 z/8

I 2 (Z)= I 2 (Z) z Z2 /8

I2 (z) = I 2 (Z) Z /4

I'2 (z) = I' 2 () 4

I3 (z) = I_3 (z) z3 /48

I3 (z)= I' 3 (Z) zt 2 /16

I' (z) = I'"3 (z) z/8
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Formulas Involving the Plasma Dispersion Function Z(C)

a. Definition: The plasma dispersion function Z( C) is defined by
_ 1~e 

Z(C)=Q7r J dx 2 i7r2 eF1+erf(i ) (H. 40)

for Im > 0 and as the analytic continuation of this for Im C s 0.
b. Symmetry properties:

Z(C*) = - z (-C) ] (H.41)

c. Differential equation characterization

Z - 2 ( + C Z)

I (H.42)
Z () i 7r2

d. Power series

Zg) = i r2 e - 2[1-2 2/3 + 4 4/15 -.. (H.43)

e. Asymptotic expansion

Z() i 7r 2 e-C _ C 1 [1 + 1/2 ]2 + 3/4 C4 + (H.44)

where
0, Im >0

a = , Im = 
2, Im C < 0

Vector and Tensor Identities

Ax (BxC) = ' C) B - (A B) C (H.A5)

(AxB) xP = BA -A B P (H.46)
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Formulas Involving the Dirac Delta Functions

co

$ e ikx dk = 2 7r 6 (x)
_ eC

JI e ik r d'k = (271) 6 (r )

(H.47)

(H.48)
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